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ORIGINAL RESEARCH ARTICLE

Extreme Temperature Events, Fine Particulate 
Matter, and Myocardial Infarction Mortality
Ruijun Xu , MD*; Suli Huang, MD, PhD*; Chunxiang Shi, PhD; Rui Wang, MD; Tingting Liu, MS; Yingxin Li, MD; Yi Zheng, MD; 
Ziquan Lv, MD, PhD; Jing Wei , PhD; Hong Sun , MD, PhD; Yuewei Liu , MD, PhD

BACKGROUND: Extreme temperature events (ETEs), including heat wave and cold spell, have been linked to myocardial 
infarction (MI) morbidity; however, their effects on MI mortality are less clear. Although ambient fine particulate matter (PM2.5) 
is suggested to act synergistically with extreme temperatures on cardiovascular mortality, it remains unknown if and how 
ETEs and PM2.5 interact to trigger MI deaths.

METHODS: A time-stratified case-crossover study of 202 678 MI deaths in Jiangsu province, China, from 2015 to 2020, was 
conducted to investigate the association of exposure to ETEs and PM2.5 with MI mortality and evaluate their interactive 
effects. On the basis of ambient apparent temperature, multiple temperature thresholds and durations were used to build 12 
ETE definitions. Daily ETEs and PM2.5 exposures were assessed by extracting values from validated grid datasets at each 
subject’s geocoded residential address. Conditional logistic regression models were applied to perform exposure-response 
analyses and estimate relative excess odds due to interaction, proportion attributable to interaction, and synergy index.

RESULTS: Under different ETE definitions, the odds ratio of MI mortality associated with heat wave and cold spell ranged from 1.18 
(95% CI, 1.14–1.21) to 1.74 (1.66–1.83), and 1.04 (1.02–1.06) to 1.12 (1.07–1.18), respectively. Lag 01-day exposure to PM2.5 
was significantly associated with an increased odds of MI mortality, which attenuated at higher exposures. We observed a significant 
synergistic interaction of heat wave and PM2.5 on MI mortality (relative excess odds due to interaction >0, proportion attributable to 
interaction >0, and synergy index >1), which was higher, in general, for heat wave with greater intensities and longer durations. We 
estimated that up to 2.8% of the MI deaths were attributable to exposure to ETEs and PM2.5 at levels exceeding the interim target 
3 value (37.5 μg/m3) of World Health Organization air quality guidelines. Women and older adults were more vulnerable to ETEs 
and PM2.5. The interactive effects of ETEs or PM2.5 on MI mortality did not vary across sex, age, or socioeconomic status.

CONCLUSIONS: This study provides consistent evidence that exposure to both ETEs and PM2.5 is significantly associated with 
an increased odds of MI mortality, especially for women and older adults, and that heat wave interacts synergistically with 
PM2.5 to trigger MI deaths but cold spell does not. Our findings suggest that mitigating both ETE and PM2.5 exposures may 
bring health cobenefits in preventing premature deaths from MI.
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Editorial, see p 324

In the context of global climate change, extreme tem-
perature events (ETEs), including heat wave and cold 
spell, are expected to be more frequent, longer, and 

more intense in the near future, which has drawn growing 

concern due to their potential adverse effects on human 
health.1,2 Emerging epidemiological studies suggest that 
ETEs can trigger acute cardiovascular events, especially 
myocardial infarction (MI).3–5 Exposure to ETEs has been 

D
ow

nloaded from
 http://ahajournals.org by on July 24, 2023

www.ahajournals.org/journal/circ
https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504
https://orcid.org/0000-0001-5339-0653
https://orcid.org/0000-0002-8803-7056
https://orcid.org/0000-0003-1467-6143
https://orcid.org/0000-0001-5970-4262
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.123.065572


ORIGINAL RESEARCH 
ARTICLE

Circulation. 2023;148:312–323. DOI: 10.1161/CIRCULATIONAHA.122.063504 July 25, 2023 313

Xu et al ETEs, PM2.5, and MI Mortality

linked to a higher risk of MI emergency department visits 
and hospitalizations.5–8 Although some previous evidence 
indicates that exposure to nonoptimum temperatures is 
significantly associated with an increased risk of MI mor-
tality,9–11 the association between ETEs and MI mortality 
remains poorly understood.

To date, only a limited number of single-city stud-
ies in Beijing, Shanghai, and Jinan, China, specifically 
explored the adverse effects of heat wave or cold spell 
on MI mortality, and the results are mixed.12–16 The stud-
ies in Beijing13 and Jinan14,15 concluded that heat wave 

was significantly associated with an increased odds of 
MI mortality, whereas the study in Shanghai12 reported 
null results. One possible reason for the inconsistent 
results is that these studies applied an identical heat 
wave definition (daily maximum air temperature ≥35 °C 
for at least 3 consecutive days) but did not account for 
intercity variation of exposure and adaptation to ambient 
temperatures, which can lead to imprecise and incompa-
rable estimates.17 Likewise, the study in Beijing defined a 
cold spell as daily minimum air temperature dropping by 
>8 °C within 48 hours with the minimum air temperature 
<4 °C simultaneously, and found that exposure to cold 
spell was significantly associated with a higher odds of 
MI mortality.16 Note that all these studies used a univari-
ate indicator for ETEs without considering various inten-
sities and durations, which fails to characterize ETEs in a 
comprehensive manner.17,18

Ambient fine particulate matter (PM2.5) pollution con-
tinues to be a critical public health issue worldwide.19 
Epidemiological studies have reported that exposure 
to extreme temperatures and PM2.5 can act synergisti-
cally to trigger cardiovascular deaths.20 In our previous 
study in 2021, we provided convincing evidence that 
exposure to PM2.5 was significantly associated with an 
increased odds of MI mortality.21,22 Given that the current 
evidence suggests a link between ETEs and MI mortality, 
it remains unknown, but is of great interest and impor-
tance, to understand if ETEs and PM2.5 interact synergis-
tically to trigger MI deaths.

To fill these gaps, we conducted a population-based 
case-crossover study of >0.2 million MI deaths in Jiangsu 
province, China, from 2015 to 2020. This study aimed to 
comprehensively assess the association of exposure to 
ETEs and ambient PM2.5 with MI mortality, quantitatively 
evaluate their interactive effects on MI mortality, and 
estimate the corresponding excess mortality. We also 
performed stratified analyses to explore potentially vul-
nerable populations.

METHODS
Data Availability
Air pollution data are available from https://weijing-rs.github.
io/product.html. Data on MI mortality and meteorological condi-
tions are not publicly available.

Study Population
We obtained mortality data from the Jiangsu provincial mortality 
surveillance system, which was developed and administrated by 
the Chinese Center for Disease Control and Prevention since 
2008 and covered the entire population of Jiangsu province 
since 2011.23 Jiangsu is an eastern central province of China 
(116°21ʹ–121°56ʹ E, 30°45ʹ–35°08ʹ N) and covers an area 
of 107 200 km2. With 4 distinct seasons, most of Jiangsu 
has a humid subtropical climate, which begins to transit into 
a humid continental climate in the far north. In 2021, Jiangsu 

Clinical Perspective

What Is New?
 • Exposure to both extreme temperature events and 

fine particulate matter is significantly associated 
with an increased odds of myocardial infarction 
mortality especially among women and older adults.

 • Heat wave exposure interacts synergistically with 
fine particulate matter to trigger myocardial infarc-
tion deaths, but cold spell exposure does not.

 • Under different extreme temperature event defini-
tions, up to 2.8% of myocardial infarction deaths 
were attributable to exposure to extreme tempera-
ture events and fine particulate matter at levels 
exceeding the interim target 3 value (37.5 μg/m3) of 
World Health Organization air quality guidelines in 
Jiangsu province, China, from 2015 to 2020.

What Are the Clinical Implications?
 • The findings of this study provide useful clues for clinical 

practitioners to improve the treatment and management 
of myocardial infarction by taking into consideration the 
independent and interactive effects of extreme temper-
ature events and fine particulate matter.

 • Reducing exposure to both extreme temperature 
events and fine particulate matter may bring health 
cobenefits in preventing premature deaths from 
myocardial infarction.

Nonstandard Abbreviations and Acronyms

AP proportion attributable to interaction
CO carbon monoxide
ETE extreme temperature event
ICD-10   International Statistical Classification of Diseases 

and Related Health Problems, 10th Revision
MI myocardial infarction
OR odds ratio
PM2.5 fine particulate matter
REOI relative excess odds due to interaction
S synergy index
SES socioeconomic status
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province had a population of 85.1 million, accounting for 6.0% 
of the total population in China. As a national economic and 
commercial center, Jiangsu had the highest gross domes-
tic product per capita among all provinces of China in 2021. 
After excluding subjects without detailed demographic infor-
mation (n=970, 0.48%), we identified a total of 202 678 sub-
jects who lived in Jiangsu province and died from MI between 
2015 and 2020. For each subject, we extracted data on date 
of birth, sex, marital status, residential address, date of death, 
and diagnostic basis from the surveillance system, and col-
lected data on gross domestic product per capita of the sub-
ject’s residential county in the year of death from the Jiangsu 
Statistical Yearbooks (2016–2021). This study was approved 
by the Ethics Committee of School of Public Health, Sun Yat-
sen University, with a waiver of informed consent.

Outcomes
The study outcome of interest was mortality from MI as the under-
lying cause of death. According to the International Statistical 
Classification of Diseases and Related Health Problems, 10th 
Revision (ICD-10), we used the ICD-10 codes of I21 and I22 to 
define MI mortality. In the Jiangsu provincial mortality surveillance 
system, diagnosis of the underlying cause of death for each case 
was made on the basis of symptoms/signs, physiobiochemistry, 
pathology, autopsy, surgery, or inference. The diagnostic basis 
was divided into 4 classes (class I, autopsy, pathology, or surgery; 
class II, symptoms/signs and physiobiochemistry; class III, symp-
toms/signs; and class IV, inference), and the diagnosis reliability 
was highest in class I and lowest in class IV.

Study Design
We investigated the association of exposure to ETEs and ambi-
ent PM2.5 with MI mortality and quantified their interactive effects 
using a time-stratified case-crossover design that has been 
widely used to evaluate the transient effects of environmental 
exposures on a variety of health outcomes.21,24 In this design, 
each subject serves as his or her own reference by comparing 
exposures on the date of death with referent exposures before 
and after the date of death within a time stratum (ie, the month 
of death). For each subject, the date of death was defined as the 
case day, whereas all other dates sharing the same year, month, 
and day of week with the case day were chosen as the corre-
sponding control days. For example, if a subject died on June 12, 
2019 (Wednesday), June 2019 was defined as the time stra-
tum, June 12, 2019, was defined as the case day, and all other 
Wednesdays in the time stratum (ie, June 5, 19, and 26) were 
defined as the corresponding control days. With this design, fac-
tors that were less likely to change within the time stratum (eg, 
age, sex, socioeconomic status [SES], lifestyle, or chronic comor-
bidities) and the effects of long-term time trend, seasonality, and 
day of week could be adequately controlled.25,26 Because a case 
day can be matched with 3 or 4 control days, 202 678 case days 
and 687 972 control days were finally included in the analysis.

Exposure Assessment
We retrieved daily grid data on meteorological conditions includ-
ing air temperature (°C) and relative humidity (%) from the China 
Meteorological Administration Land Data Assimilation System 
(CLDAS version 2.0; spatial resolution: 0.0625°×0.0625°).27–29 

Each day from 2015 to 2020, we used daily 24-hour aver-
age air temperature and relative humidity to calculate daily 
24-hour average apparent temperature (or heat index, °C) 
with the weathermetrics package in R software (version 4.1.2) 
and generated a grid dataset for daily apparent temperature. 
Because there is no standard definition for either heat wave or 
cold spell, we defined ETEs with a combination of ETE intensity 
and duration as proposed in previous studies.17,30 In each grid, 
we first calculated the 90th, 92.5th, 95th, and 97.5th percen-
tile of daily apparent temperature from 2015 to 2020 as tem-
perature thresholds for heat wave and the 10th, 7.5th, 5th, and 
2.5th percentile as temperature thresholds for cold spell. Heat 
waves were then identified as daily apparent temperature equal 
to or higher than a threshold (ie, P90, P92.5, P95, or P97.5) for 
at least 2, 3, or 4 consecutive days, whereas cold spells were 
identified as daily apparent temperature equal to or lower than 
a threshold (ie, P10, P7.5, P5, or P2.5) for at least 2, 3, or 4 con-
secutive days. For example, P95_3d represents a heat wave 
defined as daily apparent temperature equal to or higher than 
the 95th percentile of temperature for at least 3 consecutive 
days, whereas P5_3d represents a cold spell defined as daily 
apparent temperature lower than or equal to the 5th percentile 
of temperature for at least 3 consecutive days. According to 
this approach, we built 12 definitions for both heat wave and 
cold spell (Table S1) and generated 12 corresponding ETE grid 
datasets with a spatial resolution of 0.0625°×0.0625° from 
2015 to 2020. For each grid of 12 ETE grid datasets, heat 
wave and cold spell days were assigned 1 and 2, respectively, 
whereas the remaining days were assigned 0 (non-ETE days). 
From the ETE grid datasets, exposure to ETEs on each of the 
case day and control days was assessed by extracting ETE 
information (0=non-ETE days, 1=heat wave days, or 2=cold 
spell days) at each subject’s geocoded residential address.

Daily ambient air pollution data on PM2.5, sulfur dioxide (SO2), 
nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) 
were obtained from the ChinaHighAirPollutants dataset (avail-
able at https://weijing-rs.github.io/product.html), which was 
generated from our proposed artificial intelligence models com-
bined with ground measurements, satellite remote sensing prod-
ucts, and atmospheric reanalysis. The ChinaHighAirPollutants 
dataset had a full spatiotemporal coverage in China during the 
study period with a spatial resolution of 1 × 1 km for PM2.5 and 
O3, and 10 × 10 km for SO2, NO2, and CO. The cross-validated 
coefficient of determination (R2) for PM2.5, SO2, NO2, CO, and O3 
was 0.92, 0.84, 0.84, 0.80, and 0.89, respectively, whereas the 
corresponding root-mean-square error was 10.76 μg/m3, 10.07 
μg/m3, 7.99 μg/m3, 0.29 mg/m3, and 15.77 μg/m3, respec-
tively.31–34 For each subject, we extracted daily 24-hour aver-
age PM2.5, SO2, NO2, CO, and daily maximum 8-hour average 
O3 concentrations at his or her geocoded residential address 
during the case day and control days. As proposed in most pre-
vious studies, we used the mean of exposure on the same day 
of death and 1 day before (lag 01-day exposure) as the air pol-
lution exposure metric in the main analysis.19,21

Statistical Analysis
Conditional logistic regression models were used to assess the 
association of exposure to ETEs and ambient PM2.5 with MI 
mortality by including ETEs as a categorical variable and PM2.5 
as a natural cubic spline with 3 df. Odds ratio (OR) with its 

D
ow

nloaded from
 http://ahajournals.org by on July 24, 2023

https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504
https://weijing-rs.github.io/product.html


ORIGINAL RESEARCH 
ARTICLE

Circulation. 2023;148:312–323. DOI: 10.1161/CIRCULATIONAHA.122.063504 July 25, 2023 315

Xu et al ETEs, PM2.5, and MI Mortality

95% CI was used to quantify the associations. We visualized 
exposure-response curves of the association between PM2.5 
and MI mortality, and examined their nonlinearity using a likeli-
hood ratio test, which was conducted by constructing a nested 
model with the PM2.5 exposure as a continuous variable. When 
a departure from linearity was detected, piecewise conditional 
logistic regression models were applied to explore potential 
breakpoint of PM2.5 exposure.

To further evaluate the interactive effects of exposure to 
ETEs and PM2.5 on MI mortality, we classified PM2.5 exposure as 
a binary variable according to the interim target 3 in World Health 
Organization air quality guidelines 2021 for PM2.5 (low-level: ≤37.5 
μg/m3, high-level: >37.5 μg/m3),35 and generated a new variable 
with 4 levels to represent the combination of exposure to ETEs 
(heat wave or cold spell) and PM2.5, including (1) non-ETEs and 
low-level PM2.5 (level 1); (2) ETEs and low-level PM2.5 (level 2); (3) 
non-ETEs and high-level PM2.5 (level 3); and (4) ETEs and high-
level PM2.5 (level 4). The level 1 served as the reference group. By 
including this variable in the conditional logistic regression model, 
additive interactive effects, which is more informative than depar-
tures from multiplicativity when translating epidemiological results 
into public health actions,36 were assessed using 3 measures 
including relative excess odds due to interaction (REOI), propor-
tion attributable to interaction (AP), and synergy index (S), which 
represent part of the effect that is due to interaction, proportion of 
the combined effect that is due to interaction, and ratio between 
combined effect and individual effects, respectively. These 3 mea-
sures were calculated with the following formulas37,38:

REOI = (OR11 − 1)− (OR10 − 1)− (OR01 − 1)

= OR11 − OR10 − OR01 + 1

where OR10, OR01, and OR11 refer to the OR in level 2, level 3, 
and level 4 in comparison with level 1 (OR00=1), respectively. 
REOI=0, AP=0, and S=1 indicate no interactive effects of ETEs 
and PM2.5 on MI mortality; REOI >0, AP >0, and S >1 indicate 
that the combined effects of ETEs and PM2.5 on MI mortality are 
greater than the sum of the effects of each exposure alone (ie, 
synergistic effects); whereas REOI <0, AP <0, and S <1 indi-
cate that the combined effects are smaller than the sum of indi-
vidual effects of ETEs and PM2.5. The corresponding 95% CIs 
for the 3 measures were calculated using the delta method.39

To quantify excess mortality due to exposure to ETEs and PM2.5, 
we further estimated excess fraction and number of excess deaths 
according to exposure to level 2, level 3, and level 4, separately.

Number of excess deaths = Excess fraction× N

where β indicates the point estimate of exposure in level 2, 
level 3, or level 4 in the conditional logistic regression model; 
C indicates if the exposure on the day of deaths was level 2, 
level 3, or level 4 (1=yes, 0=no); N indicates the total number 
of MI deaths.

To identify potential vulnerable populations, we conducted 
stratified analyses by fitting separate models by sex (male, 
female), age (≤80 years, >80 years), and SES (low, ≤the 
median gross domestic product per capita; high, >the median 
gross domestic product per capita) to assess the independent 
effects of exposure to ETEs and PM2.5 on MI mortality and their 
interactive effects. Two-sample z tests were used to examine 
the difference of strata-specific effect estimates for each strat-
ification variable (eg, sex)40:

z =
βmale − βfemale»
SE2

male + SE2
female

where β indicates the strata-specific point estimate (ie, ln 
OR) in the conditional logistic regression model; SE indicates 
the corresponding standard error for each β.

Several sensitivity analyses were performed to test the 
robustness of our results. First, we separately added each of 
the other gaseous pollutants (ie, SO2, NO2, CO, and O3) in the 
same model to fit a 2-pollutant model and applied the likelihood 
ratio test to compare the nested models. For O3, we further 
constructed a 2-pollutant model by restricting the analysis in 
summer season (June to August). Second, we used air tem-
perature instead of apparent temperature to define ETEs and 
adjusted for mean relative humidity in the past 3 days as a 
natural cubic spline with 3 df in the model to examine the inde-
pendent and interactive effects of exposure to ETEs and PM2.5 
on MI mortality. Third, we used the median value of PM2.5 expo-
sure to classify PM2.5 as a binary variable in exploring the inter-
active effects of exposure to ETEs and PM2.5 on MI mortality. 
Fourth, we used the same day (lag 0-day), the previous 1 day 
(lag 1-day), lag 02-day, and lag 03-day exposure as the expo-
sure metric for PM2.5 exposure and used the minimized Akaike 

S =
OR11 − 1

(OR10 − 1) + (OR01 − 1)

AP =
REOI
OR11

Excess fraction =

∑N
i=1 1− 1

eβ×C

N

Table 1. Characteristics of the Study Subjects in Jiangsu 
Province, China, From 2015 to 2020

Characteristic n (%) 

All myocardial infarction deaths (case days) 202 678

Control days 687 972

Age, mean±SD 77.6±13.3

 �≤80 y 97 158 (47.9)

  >80 y 105 520 (52.1)

Sex

  Male 105 466 (52.0)

  Female 97 212 (48.0)

Marital status

  Married 130 603 (64.4)

  Unmarried 5040 (2.5)

  Widowed 65 359 (32.2)

  Divorced 1676 (0.8)

Season at death

  Spring (March to May) 49 197 (24.3)

  Summer (June to August) 42 813 (21.1)

  Autumn (September to November) 46 447 (22.9)

  Winter (December to February) 64 221 (31.7)
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information criterion to compare models with different lag peri-
ods. Last, given that the diagnosis was considered reliable if it 
was made on the basis of symptoms/signs, physiobiochemistry, 
pathology, autopsy, or surgery, we restricted the analysis to MI 
deaths determined on the basis of classes I and II, and classes 
I, II, and III, as well, respectively. All analyses were performed 
using R (version 4.1.2), and a 2-sided P value <0.05 was con-
sidered statistically significant.

RESULTS
During the study period, there were 202 678 case days 
with 687 972 control days. Among the subjects, the 
mean age was 77.6 years, 52.1% died at >80 years, 
52.0% were male, 64.4% were married, and 31.7% died 
in winter (Table 1, Figure 1D). The MI deaths determined 
on the basis of class I, II, and III diagnostic basis ac-
counted for 1.5%, 60.2%, and 24.6% of all MI deaths, 
respectively. From 2015 to 2020, the mean value of 
P2.5, P5, P7.5, P10, P90, P92.5, P95, and P97.5 of daily 
apparent temperature in each gird was 0.3 °C, 1.7 °C, 
2.6 °C, 3.2 °C, 31.9 °C, 34.7 °C, 37.4 °C, and 40.3 °C, re-
spectively; mean exposure to ambient PM2.5, SO2, NO2, 
CO, and O3 was 54.0 μg/m3,17.4 μg/m3, 35.6 μg/m3, 
0.93 mg/m3, and 102.5 μg/m3, respectively, whereas 

mean exposure to O3 in summer season was 134.4 μg/
m3 (Table S2). The exposure to PM2.5, SO2, NO2, and 
CO was positively correlated, whereas exposure to O3 
was negatively correlated with other air pollutants (all 
P<0.05; Table S3).

The spatial distribution of temperature thresholds 
and number of ETE days in each grid under differ-
ent ETE definitions in Jiangsu province, China, from 
2015 to 2020 are provided in Figure 1B and 1C, 1E 
and 1F, and Figures S1 to S5. Under the definition 
of P95_3d, the temperature thresholds and number 
of heat wave days ranged from 32.9 °C to 40.4 °C 
and 82 to 104, respectively, whereas the temperature 
thresholds and number of cold spell days in the defi-
nition of P5_3d ranged from –0.02 °C to 4.1 °C and 
57 to 90, respectively. Overall, the number of ETE 
days decreased with higher temperature thresholds 
and longer durations for heat wave and with lower 
temperature thresholds and longer durations for cold 
spell. The annual average number of ETE days from 
2015 to 2020 in Jiangsu province, China, is shown 
in Table S4.

The number of MI deaths under different exposure 
levels in Jiangsu province, China, from 2015 to 2020 

Figure 1. Location of Jiangsu province in China, spatial distribution of the study population, temperature thresholds, and 
number of extreme temperature event days in Jiangsu province, China, from 2015 to 2020.
Location of Jiangsu province in China (A) and spatial distribution of temperature thresholds of the 95th percentile (B), temperature thresholds 
of the 5th percentile (C), study population (D), number of heat wave days under the definition of P95_3d (E), and number of cold spell days 
under the definition of P5_3d (F). P95_3d represents a heat wave defined as daily apparent temperature (°C) equal to or higher than the 95th 
percentile of temperature for at least 3 consecutive days, whereas P5_3d represents a cold spell defined as daily apparent temperature lower 
than or equal to the 5th percentile of temperature for at least 3 consecutive days. 

D
ow

nloaded from
 http://ahajournals.org by on July 24, 2023

https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504
https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504
https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504
https://www.ahajournals.org/doi/suppl/10.1161/CIRCULATIONAHA.122.063504


ORIGINAL RESEARCH 
ARTICLE

Circulation. 2023;148:312–323. DOI: 10.1161/CIRCULATIONAHA.122.063504 July 25, 2023 317

Xu et al ETEs, PM2.5, and MI Mortality

is presented in Table 2 and Figure 4D. Under the defi-
nition of P95/P5_3d, 6417 (3.2%) subjects died dur-
ing heat wave days, 6331 (3.1%) subjects died during 
cold spell days, and most subjects (189 930, 93.7%) 
died during non-ETE days. Among these, 34.7% (2227) 
of MI deaths during heat wave days, 83.2% (5269) of 
MI deaths during cold spell days, and 64.4% (122 311) 
of MI deaths during non-ETE days were identified with 
high-level PM2.5. Overall, the number of MI deaths dur-
ing heat wave days decreased with higher temperature 
thresholds and longer durations, whereas the number of 
deaths during cold spell days decreased with lower tem-
perature thresholds and longer durations.

Figure 2A shows the association between exposure 
to ETEs and MI mortality. We observed that exposure 
to heat wave and cold spell was significantly associ-
ated with an increased odds of MI morality. The OR of 
exposure to heat wave ranged from 1.18 (95% CI, 1.14–
1.21) for the P90_2d definition to 1.74 (1.66–1.83) for 
the P97.5_4d definition, whereas the OR of exposure to 
cold spell ranged from 1.04 (1.02–1.06) for the P10_2d 
definition to 1.12 (1.07–1.18) for the P2.5_3d definition 
(all P<0.05). Overall, the odds of MI mortality increased 
with a higher temperature threshold and longer duration 
for heat wave, and with a lower temperature threshold 
and longer duration for cold spell (Table S5).

The association between lag 01-day exposure to 
ambient PM2.5 and MI mortality is presented in Fig-
ure 2B. With adjustment for heat wave with the definition 
of P95_3d and cold spell with the definition of P5_3d 
in the model, the exposure-response curve shows that 
the OR of MI mortality increased monotonically with 
increasing PM2.5 exposures but attenuated after an esti-
mated breakpoint of 39.5 μg/m3 (Pnonlinearity<0.05). Simi-
lar trends and breakpoints of the exposure-response 
curves of associations between PM2.5 and MI mortality 
were observed with adjustment for ETEs with other defi-
nitions in the model.

The additive interactive effects of exposure to ETEs and  
PM2.5 on MI mortality are shown in Figure 3, Table S6, 
and Table 3. Under the P95_3d definition, the OR10, OR01, 
and OR11 of MI mortality was 1.19 (95% CI, 1.14–1.23), 
1.02 (1.004–1.03), and 1.72 (1.54–1.93), respectively; 
the REOI, AP, and S was 0.52 (95% CI, 0.42–0.62), 0.30 
(0.26–0.35), and 3.57 (2.77–4.60), respectively, indicat-
ing significant synergistic effects of exposure to heat 
wave and PM2.5 on MI mortality. Similar significant syn-
ergistic effects were observed under different heat wave 
definitions (indicated by REOI >0, AP >0, and S >1; all 
P<0.05), which, in general, increased with more stringent 
temperature thresholds and prolonged durations of heat 
wave. No significant synergistic effect was observed for 
exposure to cold spell and PM2.5.

The excess mortality due to exposure to ETEs and 
high-level PM2.5 are presented in Figure 4A through 4C 
and Tables S7 to S8. The excess fraction under different 

ETE definitions ranged from 1.8% to 2.8%, correspond-
ing to 3699 to 5668 excess deaths, respectively. Under 
the definition of P95/P5_3d, the estimated excess frac-
tion was 2.1%, corresponding to 4186 MI deaths; among 
them, 15.7% (excess fraction, 0.3%; number of excess 
deaths, 656), 2.6% (0.05%, 108), 49.7% (1.0%, 2079), 
22.3% (0.5%, 935), and 9.7% (0.2%, 408) were attribut-
able to exposure to heat wave and low-level PM2.5, cold 
spell and low-level PM2.5, non-ETEs and high-level PM2.5, 
heat wave and high-level PM2.5, and cold spell and high-
level PM2.5, respectively. Overall, the excess mortality 
decreased with a higher temperature threshold and lon-
ger duration for heat wave, and with a lower temperature 
threshold and longer duration for cold spell.

Table 2. Number of Myocardial Infarction Deaths During 
Extreme Temperature Event Days in Jiangsu Province, China, 
From 2015 to 2020

Definition* 

No. of myocardial infarction deaths (%)

Overall 
With high-level fine 
particulate matter 

With low-level fine 
particulate matter 

Heat wave

  P90_2d 15 198 3606 (23.7) 11 592 (76.3)

  P90_3d 13 284 3047 (22.9) 10 237 (77.1)

  P90_4d 11 949 2811 (23.5) 9138 (76.5)

  P92.5_2d 11 699 2911 (24.9) 8788 (75.1)

  P92.5_3d 10 055 2659 (26.4) 7396 (73.6)

  P92.5_4d 8728 2485 (28.5) 6243 (71.5)

  P95_2d 7919 2450 (30.9) 5469 (69.1)

  P95_3d 6417 2227 (34.7) 4190 (65.3)

  P95_4d 5274 2009 (38.1) 3265 (61.9)

  P97.5_2d 4229 1899 (44.9) 2330 (55.1)

  P97.5_3d 3405 1732 (50.9) 1673 (49.1)

  P97.5_4d 2811 1557 (55.4) 1254 (44.6)

Cold spell

  P10_2d 19 192 15 960 (83.2) 3232 (16.8)

  P10_3d 13 956 12 121 (86.9) 1835 (13.1)

  P10_4d 10 343 9387 (90.8) 956 (9.2)

  P7.5_2d 14 175 11 574 (81.7) 2601 (18.3)

  P7.5_3d 9863 8473 (85.9) 1390 (14.1)

  P7.5_4d 7073 6301 (89.1) 772 (10.9)

  P5_2d 9319 7334 (78.7) 1985 (21.3)

  P5_3d 6331 5269 (83.2) 1062 (16.8)

  P5_4d 4460 3838 (86.1) 622 (13.9)

  P2.5_2d 4249 3052 (71.8) 1197 (28.2)

  P2.5_3d 2597 1969 (75.8) 628 (24.2)

  P2.5_4d 1531 1242 (81.1) 289 (18.9)

*For example, P95_3d represents a heat wave defined as daily apparent tem-
perature equal to or higher than the 95th percentile of temperature for at least 
3 consecutive days, whereas P5_3d represents a cold spell defined as daily ap-
parent temperature lower than or equal to the 5th percentile of temperature for 
at least 3 consecutive days.
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In stratified analyses, we observed that the indepen-
dent effects of exposure to heat wave on MI mortality were 
significantly higher in women than that in men, whereas 

the independent effects of exposure to ETEs and PM2.5 
were significantly higher in adults >80 years than that in 
adults ≤80 years (Pdifference<0.05; Table 4). No significant 
difference in independent effects of exposure to ETEs or 
PM2.5 on MI mortality was detected across SES (all Pdiffer-

ence>0.05; Table 4). For interactive effects of exposure to 
ETEs and PM2.5 on MI mortality, we did not observe any 
significant difference in the synergistic effects across sex, 
age, or SES (all Pdifference>0.05; Table 4).

Sensitivity analyses by adjusting for each of the gas-
eous pollutants in the models (Tables S9 to S13), using 
air temperature to define ETEs (Table S14), classifying 
PM2.5 with the median value of 45.9 μg/m3 (Table S15), 
and using lag 0-day, lag 02-day, and lag 03-day expo-
sure as the exposure metric for PM2.5 (Tables S16, S18, 
and S19) gave similar results, whereas the association 
between PM2.5 exposure and MI mortality became slightly 
weaker when using lag 1-day as the exposure metric 
(Table S17). The Akaike information criterion value of 
the association for exposure to PM2.5 with different lag 
periods was minimal for lag 01-day (Table S20). Restrict-
ing the analysis to MI deaths determined by classes I, II, 
or III diagnostic basis showed similar estimates for the 
independent and interactive effects of exposure to ETEs 
and PM2.5 on MI mortality (Tables S21 and S22).

DISCUSSION
In this population-based case-crossover study of >0.2 
million MI deaths in Jiangsu province, China, from 2015 
to 2020, we comprehensively investigated the asso-
ciation of exposure to ETEs and ambient PM2.5 with 

Figure 2. Association of exposure to extreme temperature events and PM2.5 with myocardial infarction mortality.
A, OR (95% CI) of myocardial infarction mortality associated with exposure to extreme temperature events. The horizontal black line represents the OR of 
1. B, Exposure-response curves of the association between lag 01-day exposure to ambient PM2.5 and myocardial infarction mortality. The solid dark blue 
line with shaded region represents the OR of myocardial infarction mortality associated with exposure to PM2.5 with adjustment for extreme temperature 
events defined as daily apparent temperature equal to or higher than the 95th percentile temperature (P95_3d) or equal to or lower than the 5th percentile 
of temperature (P5_3d) for at least 3 consecutive days and the corresponding 95% CI, respectively. The horizontal black line represents the OR of 1, 
whereas the vertical red line refers to the cutoff value of high-level PM2.5 (>37.5 μg/m3). OR indicates odds ratio; and PM2.5, fine particulate matter.

Figure 3. OR of myocardial infarction mortality associated 
with exposure to heat wave and PM2.5.
OR00, OR10, OR01, and OR11 represent the OR of myocardial infarction 
mortality due to exposure to non-extreme temperature events and 
low-level PM2.5, heat wave and low-level PM2.5, non-heat wave and 
high-level PM2.5, and heat wave and high-level PM2.5, respectively. For 
example, P95_3d represents a heat wave defined as daily apparent 
temperature equal to or higher than the 95th percentile of temperature 
for at least 3 consecutive days. OR indicates odds ratio; PM2.5, fine 
particulate matter; and REOI, relative excess odds due to interaction.
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MI  mortality and quantified their interactive effects. We 
found that exposure to heat wave, cold spell, and PM2.5 
was significantly associated with an increased odds of MI 
mortality, and heat wave can interact synergistically with 
PM2.5 to trigger MI deaths. The independent effects of 
ETEs and interactive effects of heat wave and PM2.5 on 
MI mortality increased with greater intensities and longer 
durations of ETEs. We estimated that exposure to ETEs 
and high-level PM2.5 was responsible for up to 2.8% of 
MI deaths. Women were more vulnerable to heat wave, 
whereas older adults were more vulnerable to heat wave, 
cold spell, and PM2.5. The interactive effects of ETEs and 
PM2.5 on MI mortality did not vary across sex, age, or SES.

There were limited studies examining the association of 
exposure to heat wave or cold spell with MI mortality, and 
the results were inconsistent.12–16 A case-crossover study 

in Beijing and 2 case-crossover studies in Jinan, China, 
reported that exposure to heat wave was significantly asso-
ciated with an increased odds of MI mortality (OR in Bei-
jing, 2.857; ORs in Jinan, 1.60 and 1.38)13–15; in contrast, 
a time-series study in Shanghai, China, did not observe 
any significant association between heat wave and daily 
MI deaths.12 For cold spell, only 1 case-crossover study in 
Beijing, China, investigated its association with MI mortality 
and found that cold spell was significantly associated with a 
67.9% increase in odds of MI mortality.16 Except for the null 
association for heat wave in the Shanghai study,12 the other 
4 studies reported positive associations between ETEs and 
MI mortality, with effect estimates close to or higher than 
ours. Possible reasons for the inconsistent estimates may 
be heterogeneities in the characteristics of subjects, expo-
sure pattern, and exposure assessment (eg, definition of 

Figure 4. Excess fraction and number of excess deaths due to exposure to ETEs and PM2.5, and distribution of MI deaths under 
different exposure levels.
A, Excess fraction of MI deaths due to exposure to ETEs and high-level PM2.5. B, Proportion of excess fraction. C, Number of excess deaths due 
to exposure to ETEs and high-level PM2.5. D, Distribution of MI deaths under different exposure levels. For example, P95/P5_3d represents a heat 
wave defined as daily apparent temperature equal to or higher than the 95th percentile of temperature for at least 3 consecutive days and a cold 
spell defined as daily apparent temperature lower than or equal to the 5th percentile of temperature for at least 3 consecutive days. ETE indicates 
extreme temperature event; MI, myocardial infarction; and PM2.5, fine particulate matter.
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ETEs, source of exposure data). In addition, it should be 
noted that all of these studies used a univariate indicator 
for heat wave or cold spell without considering the variation 
of temperature distributions and personal adaptive capaci-
ties in different climate zones and did not capture charac-
teristics of ETEs under various intensities and durations. 
In comparison, our study applied a series of grid-specific 
relative temperature thresholds and durations to compre-
hensively characterize the exposure to ETEs. In addition to 
confirming the adverse effects of ETEs on MI mortality in 
a comprehensive manner, our results revealed that these 
adverse effects increased with greater intensities and lon-
ger durations of ETEs. Overall, our findings provide crucial 
information for public health policy that developing ETE 
early warning systems may be useful to help prevent pre-

mature deaths from MI and highlight that the intensity and 
duration of ETEs should be considered simultaneously to 
help provide comprehensive warning services.

As the climate crisis progresses, the co-occurrence 
of ETEs and PM2.5 pollution continues to be more fre-
quent in recent years. Although research interests in the 
interactive effects of extreme temperatures and PM2.5 
on cardiovascular mortality are increasing,20 the possible 
synergistic effects of ETEs and PM2.5 on MI mortality are 
yet to be evaluated. To our knowledge, this is the first 
study to systematically investigate the interactive effects 
of ETEs and PM2.5 on MI mortality under various inten-
sities and durations of ETEs. Our study provides novel 
evidence that heat wave and PM2.5 can interact synergis-
tically to trigger MI deaths, and these interactive effects 
increase with greater intensities and longer durations 
of heat wave, highlighting the importance and poten-
tial benefits of mitigating co-exposure to heat wave and 
PM2.5. In addition, we estimated that reducing exposure 
to ETEs and high-level PM2.5 would avoid up to 2.8% of 
MI deaths. Therefore, mitigating PM2.5 exposure when 
providing ETE warning services, particularly for heat 
wave, can bring great public health cobenefits.

Previous studies have reported that exposure to 
extremely high temperatures can accelerate the ther-
moregulatory progress (eg, increasing sweating and 
skin blood flow), induce water loss and dehydration, as 
well, and increase cardiac output.41 When the thermo-
regulatory system fails, the core body temperature will 
rise, which may lead to a series of responses, includ-
ing systemic inflammation, oxidative stress, endothelial 
dysfunction, and direct cytotoxic effects, and potentially 
trigger myocardial ischemia.42 In addition, it has been 
reported that exposure to extremely low temperatures 
can activate the sympathetic nervous system and the 
renin-angiotensin system, induce multiple physiologi-
cal changes (eg, blood vessels contracting and blood 
pressure elevation), and finally provoke cardiovascular 
impairments.43 Moreover, our study suggests signifi-
cant synergistic interactions of heat wave and PM2.5 
on MI mortality. It is biologically plausible that high 
temperatures may accelerate the uptake of PM2.5 by 
sweating, elevating skin blood flow, and minute ven-
tilation.44 In addition, the common biological pathways 
of heat wave and PM2.5 exposures, including increased 
systemic inflammation and oxidative stress, can make 
synergistic health effects plausible.42,45 Nonetheless, 
the exact mechanisms underlying the independent 
effects of ETEs and the interactive effects of heat 
wave and PM2.5 on MI mortality need to be clarified in 
future investigations.

Our stratified analyses suggest that the associa-
tions between ETEs and MI mortality were stronger 
in women and older adults. From a physiological point 
of view, women appear to have poor thermoregulation, 
lower sweating capacity, and greater airway reactivity 

Table 3. Additive Interactive Effects of Exposure to Extreme 
Temperature Events and PM2.5 on Myocardial Infarction  
Mortality

Definition* 

Additive interaction

REOI (95% CI) AP (95% CI) S (95% CI) 

Heat wave

  P90_2d 0.30 (0.24 to 0.37) 0.21 (0.17 to 0.25) 3.29 (2.49 to 4.34)

  P90_3d 0.38 (0.31 to 0.45) 0.25 (0.21 to 0.29) 3.61 (2.78 to 4.70)

  P90_4d 0.44 (0.36 to 0.51) 0.28 (0.24 to 0.31) 4.02 (3.07 to 5.26)

  P92.5_2d 0.41 (0.33 to 0.48) 0.26 (0.22 to 0.30) 3.85 (2.93 to 5.07)

  P92.5_3d 0.43 (0.35 to 0.51) 0.27 (0.23 to 0.31) 3.69 (2.84 to 4.80)

  P92.5_4d 0.49 (0.40 to 0.57) 0.29 (0.25 to 0.33) 3.92 (3.02 to 5.10)

  P95_2d 0.46 (0.37 to 0.55) 0.28 (0.24 to 0.32) 3.37 (2.64 to 4.30)

  P95_3d 0.52 (0.42 to 0.62) 0.30 (0.26 to 0.35) 3.57 (2.77 to 4.60)

  P95_4d 0.55 (0.45 to 0.66) 0.31 (0.26 to 0.35) 3.25 (2.55 to 4.14)

  P97.5_2d 0.52 (0.40 to 0.64) 0.28 (0.23 to 0.34) 2.66 (2.10 to 3.36)

  P97.5_3d 0.55 (0.41 to 0.69) 0.28 (0.22 to 0.34) 2.32 (1.85 to 2.91)

  P97.5_4d 0.52 (0.35 to 0.68) 0.25 (0.18 to 0.32) 1.98 (1.58 to 2.48)

Cold spell

  P10_2d –0.06 (–0.11 to –0.01) –0.06 (–0.10 to –0.01) 0.45 (0.25 to 0.81)

  P10_3d –0.06 (–0.12 to 0.003) –0.06 (–0.12 to 0.003) 0.48 (0.25 to 0.91)

  P10_4d –0.07 (–0.16 to 0.01) –0.07 (–0.15 to 0.01) 0.45 (0.21 to 0.96)

  P7.5_2d –0.03 (–0.08 to 0.03) –0.03 (–0.08 to 0.02) 0.67 (0.35 to 1.31)

  P7.5_3d –0.05 (–0.13 to 0.02) –0.05 (–0.12 to 0.02) 0.56 (0.28 to 1.09)

  P7.5_4d –0.08 (–0.18 to 0.02) –0.08 (–0.17 to 0.02) 0.48 (0.23 to 0.99)

  P5_2d –0.04 (–0.11 to 0.02) –0.04 (–0.10 to 0.02) 0.59 (0.29 to 1.20)

  P5_3d –0.05 (–0.13 to 0.04) –0.05 (–0.12 to 0.03) 0.63 (0.31 to 1.28)

  P5_4d –0.11 (–0.23 to 0.004) –0.11 (–0.21 to 0.003) 0.42 (0.20 to 0.87)

  P2.5_2d –0.01 (–0.10 to 0.07) –0.01 (–0.09 to 0.07) 0.88 (0.37 to 2.23)

  P2.5_3d –0.06 (–0.18 to 0.06) –0.05 (–0.16 to 0.06) 0.68 (0.32 to 1.45)

  P2.5_4d –0.09 (–0.26 to 0.08) –0.08 (–0.24 to 0.08) 0.51 (0.16 to 1.65)

AP indicates proportion attributable to interaction; PM2.5, fine particulate mat-
ter; REOI, relative excess odds due to interaction; and S, synergy index.

*For example, P95_3d represents a heat wave defined as daily apparent tem-
perature equal to or higher than the 95th percentile of temperature for at least 
3 consecutive days, whereas P5_3d represents a cold spell defined as daily ap-
parent temperature lower than or equal to the 5th percentile of temperature for 
at least 3 consecutive days.
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than men that can weaken their adaptive capacities 
for extreme environmental factors.46,47 These bio-
logical characteristics may also be a part of underly-
ing reasons for their reasonably higher vulnerability 
when simultaneously exposed to PM2.5, although the 
 difference in the interactive effects did not reach 
statistical significance. In addition, it is known that 
older adults tend to have degradation of physiologi-
cal processes that occurs as an individual ages, which 
can lead to a higher rate of preexisting conditions 
and therefore increase the risks of MI events when 
exposed to extreme temperatures.48

Our study has several strengths. First, this case-
crossover study of >0.2 million MI deaths was designed 
on the basis of a population of 85.1 million in Jiangsu 
province from 2015 to 2020. The large sample size 
enabled us to systematically investigate the associa-
tion of exposure to ETEs and PM2.5 with MI mortality 
and quantify their interactive effects with a sufficient 
statistical power. Second, we performed individual-level 
exposure assessments by extracting ETE information 
from a series of relatively high spatial resolution grid 
datasets. Multiple grid-specific ETE definitions allowed 

us to account for the variation of exposure and adap-
tation to ambient temperatures in different regions on 
exposure assessments and to comprehensively explore 
the associations of ETEs with MI mortality under dif-
ferent intensities and durations. Furthermore, we used 
apparent temperature as an indicator of human per-
ceived temperature to define ETEs, which combines 
multiple meteorological conditions (including air tem-
perature and relative humidity) and has been proposed 
as a reasonably comprehensive weather metric to bet-
ter characterize ETE exposures.49 In comparison with 
using air temperature as a single indicator to define 
ETEs, the application of apparent temperature can help 
provide more accurate exposure assessments. Third, 
the time-stratified case-crossover design provided us 
with unique opportunities to control time-invariant per-
sonal confounding factors (eg, age, sex, SES, lifestyle, 
or chronic comorbidities), long-term time trend, and 
seasonality in the analysis.

Some limitations in our study should also be dis-
cussed. First, as in most previous studies, we used 
ambient meteorological data (the spatial resolution 
was relatively coarse) and air pollution data from grid 

Table 4. OR and REOI of Exposure to Extreme Temperature Events and Fine Particulate Matter on Myocardial Infarction Mor-
tality by Sex, Age, and Socioeconomic Status

Definition* 

Sex Age Socioeconomic status

Male Female ≤80 y >80 y Low High 

OR

  Heat wave

   P95_2d 1.22 (1.17 to 1.28) 1.35 (1.29 to 1.41)† 1.17 (1.12 to 1.22) 1.39 (1.34 to 1.45)† 1.29 (1.24 to 1.34) 1.27 (1.20 to 1.33)

   P95_3d 1.22 (1.17 to 1.28) 1.43 (1.36 to 1.50)† 1.18 (1.13 to 1.24) 1.46 (1.40 to 1.53)† 1.33 (1.28 to 1.39) 1.29 (1.22 to 1.36)

   P95_4d 1.27 (1.21 to 1.33) 1.51 (1.44 to 1.59)† 1.23 (1.17 to 1.30) 1.54 (1.47 to 1.61)† 1.39 (1.33 to 1.45) 1.38 (1.30 to 1.46)

  Cold spell

   P5_2d 1.05 (1.02 to 1.09) 1.05 (1.01 to 1.09) 1.04 (0.999 to 1.08) 1.06 (1.03 to 1.10) 1.04 (1.01 to 1.07) 1.07 (1.03 to 1.12)

   P5_3d 1.08 (1.04 to 1.13) 1.07 (1.02 to 1.11) 1.05 (1.002 to 1.10) 1.10 (1.05 to 1.14) 1.07 (1.03 to 1.11) 1.09 (1.03 to 1.15)

   P5_4d 1.10 (1.04 to 1.15) 1.06 (1.01 to 1.11) 1.03 (0.98 to 1.09) 1.11 (1.06 to 1.16)† 1.06 (1.02 to 1.11) 1.11 (1.05 to 1.18)

  PM2.5 1.03 (1.01 to 1.04) 1.04 (1.02 to 1.06) 1.02 (0.998 to 1.04) 1.05 (1.03 to 1.07)† 1.03 (1.02 to 1.05) 1.03 (1.01 to 1.06)

REOI

  Heat wave

   P95_2d 0.31 (0.19 to 0.42) 0.62 (0.48 to 0.76) 0.36 (0.24 to 0.47) 0.56 (0.42 to 0.69) 0.40 (0.29 to 0.50) 0.57 (0.42 to 0.73)

   P95_3d 0.38 (0.26 to 0.51) 0.67 (0.51 to 0.82) 0.42 (0.29 to 0.55) 0.62 (0.47 to 0.77) 0.47 (0.34 to 0.59) 0.62 (0.45 to 0.78)

   P95_4d 0.38 (0.24 to 0.52) 0.74 (0.57 to 0.91) 0.47 (0.33 to 0.61) 0.63 (0.47 to 0.80) 0.49 (0.36 to 0.63) 0.66 (0.47 to 0.84)

  Cold spell

   P5_2d –0.04 (–0.13 to 0.05) –0.04 (–0.13 to 0.05) –0.05 (–0.14 to 0.04) –0.04 (–0.13 to 0.05) –0.09 (–0.17 to –0.003) 0.03 (–0.07 to 0.13)

   P5_3d –0.05 (–0.17 to 0.07) –0.05 (–0.17 to 0.07) 0.002 (–0.12 to 0.12) –0.10 (–0.22 to 0.02) –0.12 (–0.24 to 0.01) 0.04 (–0.09 to 0.16)

   P5_4d –0.13 (–0.29 to 0.04) –0.10 (–0.26 to 0.07) –0.01 (–0.17 to 0.15) –0.21 (–0.38 to –0.04) –0.21 (–0.38 to –0.04) 0.002 (–0.16 to 
0.16)

OR indicates odds ratio; PM2.5, fine particulate matter; and REOI, relative excess odds due to interaction.
*For example, P95_3d represents a heat wave defined as daily apparent temperature equal to or higher than the 95th percentile of temperature for at least 3 con-

secutive days, whereas P5_3d represents a cold spell defined as daily apparent temperature lower than or equal to the 5th percentile of temperature for at least 3 
consecutive days.

†Pdifference<0.05, estimated using the 2-sample z test.
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datasets rather than individual direct measurements, 
and we were unable to account for personal adaptive 
behaviors (eg, the use of an air conditioner, staying 
indoors in extreme temperature days) due to lack of 
data, which might introduce certain inevitable expo-
sure misclassifications. In addition, because we did 
not have data on the specific time and exact location 
at MI onset or death for each subject, misclassifica-
tions were also possible in assessing the exposure to 
both ETEs and PM2.5 on the date of death on the basis 
of each subject’s residential address. Note that these 
exposure misclassifications tended to be nondiffer-
ential and can lead to an underestimation of asso-
ciations.50 Second, because ETE definitions used in 
this study were directly relevant to personal exposure 
characteristics and adaption capacities, researchers 
should be cautious when generalizing our results to 
other regions or populations. Third, although we used 
the time-stratified case-crossover design to control 
for some time-variant confounders, certain unmea-
sured confounders (eg, medication use) were pos-
sible and might introduce inaccurate risk estimates. 
Last, although strict quality control measurements 
were implemented to determine the causes of death, 
there may still be potential misclassifications on the 
identified MI deaths in this study with a large sample 
size. However, our sensitivity analyses, restricting to 
MI deaths determined using more reliable diagnostic 
basis, demonstrated that the findings were robust.

In conclusion, we found that exposure to heat wave, 
cold spell, and ambient PM2.5 was significantly associ-
ated with an increased odds of MI mortality especially 
among women and older adults, and that heat wave 
could interact synergistically with PM2.5 to trigger MI 
deaths. The independent effects of ETEs and interactive 
effects of heat wave and PM2.5 on MI mortality increased 
with greater intensities and longer durations of ETEs. 
Our findings provide crucial evidence that mitigating 
exposure to ETEs and PM2.5 may be useful to prevent 
premature deaths from MI and highlight great public 
health significance to take particulate pollution into con-
sideration when providing ETE warning services to the 
public.
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