
Ecotoxicology and Environmental Safety 270 (2024) 115839

Available online 20 December 2023
0147-6513/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Role of metabolic risk factors in the relationship between ambient fine 
particulate matter and depressive symptoms: Evidence from a longitudinal 
population study 

Huan Xu a,b,1, Xian Liang c,1, Lei Wang b, Jing Wei d, Bing Guo b, Chunmei Zeng b, Shiyu Feng b, 
Songmei Wang e, Xianxian Yang f, Yongyue Pan g, Ziyun Wang h, Linshen Xie b,*, Jan 
D. Reinhardt a,i, j,k,**, Wenge Tang f,***, Xing Zhao b, on behalf of the China Multi-Ethnic Cohort 
(CMEC) collaborative group 
a Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China 
b West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China 
c Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China 
d Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA 
e School of Public Health, Kunming Medical University, Kunming, Yunnan, China 
f Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China 
g School of Medicine, Tibet University, Lhasa, Tibet, China 
h School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 
Guizhou, China 
i Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, China 
j Swiss Paraplegic Research, Nottwil, Switzerland 
k Faculty for Health and Medicine, University of Lucerne, Switzerland   

A R T I C L E  I N F O   

Edited by Renjie Chen  

Keywords: 
Particulate matter 
Depression 
Metabolic risk factor 
Mediation analysis 
Epidemiologic study 

A B S T R A C T   

Background: There is growing evidence indicating a connection between fine particulate matter (PM2.5) and 
depressive symptoms. Metabolic risk factors are critical determinants of depressive symptoms. However, the 
mediating role of these factors on the association between PM2.5 and depressive symptoms remains elusive. We 
aimed to investigate whether and to what extent metabolic risk factors mediated the link between long-term 
PM2.5 exposure and depressive symptoms. 
Methods: This study comprised 7794 individuals aged between 30 and 79 years who participated in two waves of 
the on-site surveys in the China Multi-Ethnic Cohort. Ambient PM2.5 concentrations were assessed utilizing a 
random forest method based on satellite data. We employed the Patient Health Questionnaire-9 to assess 
depressive symptoms at wave 2, and the overall as well as three sub-domain symptom scores (emotional, neu-
rovegetative, and neurocognitive symptoms) were calculated. Three metabolic risk factors, including hyper-
tension, diabetes, and dyslipidemia, were considered. Mediation analyses were conducted to assess the indirect 
effects of PM2.5 on depressive symptoms through metabolic risk factors. 
Results: We found a positive association between chronic exposure to ambient PM2.5 and overall depressive 
symptoms as well as the three sub-domains. In mediation analyses, metabolic risk factors partially mediated the 
associations of PM2.5 on depressive symptoms. The natural indirect effects (RR, 95% CI) of PM2.5 on overall, 
emotional, neurovegetative, and neurocognitive symptoms mediated through metabolic risk factors were 1.004 
(1.001, 1.007), 1.004 (1.001, 1.008), 1.004 (1.001, 1.007), and 1.003(0.999, 1.007), respectively. Larger 
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indirect effects were found in elderly participants (mediated proportion, 29.3%), females (13.3%), and people 
who did not consume alcohol (19.6%). 
Conclusions: Metabolic risk factors may act as mediators in the relationship between chronic PM2.5 exposure and 
depression. Treatment of metabolic risk factors may be an opportunity to reduce the burden of depression caused 
by long-term exposure to PM2.5.   

1. Introduction 

Depression is a highly prevalent but poorly recognized illness 
(Herrman et al., 2022), with about 6% of the worldwide population 
encountering major depressive disorder annually (Kessler and Bromet, 
2013; Malhi and Mann, 2018). Insights into the etiology of depression 
and its prevention remain a clinical and public health priority, in 
particular with increasing population exposure to adverse environ-
mental conditions and the current absence of curative treatment 
(Herrman et al., 2022; Malhi and Mann, 2018). 

Recently, the environmental determinants of depression have 
received increased attention, with air pollution (especially fine partic-
ulate matter [PM2.5]) having the largest evidence. Short-term effects of 
air pollution on negative emotions are well understood (Benedetti et al., 
2001; Kent et al., 2009; Xu et al., 2020) and intuitively perceived (e.g., 
effects of decreased visibility or strong odor or smog on people’s mood 
(Li et al., 2019; Zhang et al., 2017; Zheng et al., 2019)). With regard to 
long-term effects of air pollution, recent epidemiological investigations 
have linked chronic exposure to PM2.5 to a higher depression risk 
(Borroni et al., 2022; Braithwaite et al., 2019; Kioumourtzoglou et al., 
2017; Shi et al., 2020; Wei et al., 2022; Yang et al., 2023; Zhang et al., 
2019; Zijlema et al., 2016). However, the specific mechanism by which 
prolonged exposure to PM2.5 causes depression remains elusive. 

It has been well demonstrated that long-term exposure to PM2.5 in-
creases metabolic risks such as hypertension(Yang et al., 2018), dysli-
pidemia (Gaio et al., 2019), and diabetes (Liu et al., 2019). Additionally, 
a large body of research has established that metabolic risk factors are 
associated with the increased risk of depression (Akbaraly et al., 2011; 
Arango et al., 2021; Jeon et al., 2019; Pan et al., 2012). A recent um-
brella review detected that metabolic factors were class I (con-
vincing)-III (suggestive) risk factors for depressive disorders(Arango 
et al., 2021). From a mechanistic perspective, PM2.5 leads to metabolic 
disturbances in the body through inflammatory processes, oxidative 
stress, and disruption of the autonomic nervous system (Al-Kindi et al., 
2020; Brook et al., 2010). Further, metabolic disorders upregulate 
cytokine expression and contribute to cerebrovascular injury, which 
may induce depressive symptoms (Alexopoulos et al., 1997; Pan et al., 
2012; Schiepers et al., 2005; Vykoukal and Davies, 2011). Therefore, it 
is plausible to hypothesize that metabolic risk factors are the potential 
pathway between long-term exposure to PM2.5 and depression. To date, 
no epidemiological study has examined whether and to what extent 
metabolic risk factors play a mediating role in the relationship between 
chronic exposure to PM2.5 and depression. 

The current study aims to examine the mediating role of metabolic 
risk factors in the association of long-term exposure to PM2.5 with 
depressive symptoms, as well as the changes in the strength of the 
mediating effect among different characteristics of individuals. We 
constructed a causal mediation analysis in a well-characterized pro-
spective cohort in China. In addition, the measure of depressive symp-
toms relies on multidimensional symptoms that constitute a syndrome, 
including emotional, neurovegetative, and neurocognitive symptoms 
(Malhi and Mann, 2018). Considering that the three sub-domain 
symptoms may differ in terms of their underlying etiologies, comor-
bidities, and response to treatment (Majd et al., 2021; Vares et al., 
2015), we further conducted mediation analyses on the three 
sub-domain symptoms of depression. With this study, we hope to pro-
vide not only important insight into the causal mechanism of 
PM2.5-depression, but also to contribute to the development of public 

policy recommendations that can reduce the burden of depression. 

2. Methods 

2.1. Study participants 

The current study utilized data collected during two waves of on-site 
surveys conducted in the China Multi-Ethnic Cohort (CMEC). Overall, 
CMEC aims to represent the general adult population in Southwest 
China. Comprehensive details regarding the CMEC are available else-
where (Zhao et al., 2021). At wave 1, CMEC enrolled 99,556 participants 
aged 30–79 residing in Southwest China (five provinces). This recruit-
ment was carried out utilizing a multi-stage, stratified cluster sampling 
approach, with data collection between May 2018 and September 2019. 
The estimated population response rate was approximately 60% 
(60–90% in rural areas and 40–60% in urban areas). All participants of 
wave 1 completed face-to-face interviews with the aid of tablets, 
comprehensive physical examinations, and clinical laboratory tests. 
Wave 2 was conducted between August 2020 and July 2021, approxi-
mately two years after wave 1. Multi-stage random sampling was 
applied to recruit 10% of the participants from wave 1, and these par-
ticipants (n = 11,527) were invited to complete the same questionnaires, 
physical examinations, and clinical laboratory tests that had been used 
in wave 1. Prior to both surveys, informed consent was collected from 
every individual, and the Sichuan University Medical Ethics Review 
Committee gave its approval to the study (K2016038, K2020022). 

The present study drew on participants who took part in both wave 1 
and wave 2 on-site surveys. We excluded Tibetan residents because they 
lived in a particular environment with extremely high altitude (>3500 
m above sea level), hypoxia, and deep cold. This extreme environment 
may impact the underlying mechanism pathway of “PM → metabolic 
risk factors → depression” (Beall, 2007; Bigham and Lee, 2014; Penaloza 
and Arias-Stella, 2007) and weaken the comparability between Tibetan 
residents and lowlanders. For example, Individuals living at high alti-
tudes may exhibit specific circulatory, metabolic, and hematological 
adaptations (Beall, 2007; Bigham and Lee, 2014; Penaloza and 
Arias-Stella, 2007). We further excluded participants who 1) lived in 
Aba area due to their herding life without a permanent residence, 2) had 
incomplete address information or had been living at their current 
address for less than three years at the time of wave 1, 3) self-reported 
depression symptoms at wave 1, 4) had any physician-diagnosed 
mental illness, neurasthenia, traumatic brain injury or cancer, or 5) 
were pregnant, 6) had missing information on the outcome or cova-
riates. After these exclusions, 7794 participants were examined in the 
following analyses (Supplementary Fig. S1). 

To explore the mediating role of metabolic risk factors, we estimated 
the average of resident PM2.5 concentrations in the three years prior to 
the wave 1 survey, and then assessed metabolic risk factors at wave 1. 
Finally, the measurement of depressive symptoms was conducted at 
wave 2. Fig. 1 displays the timeline of study assessments and a directed 
acyclic graph visualizing associations between PM2.5, metabolic risk 
factors, and depressive symptoms. 

2.2. Fine particulate matter 

The outdoor PM2.5 data were sourced from the ChinaHighAirPollu-
tants (CHAP) dataset (https://weijingrs.github.io/product.html, 
accessed July 9, 2020). As previously mentioned (Wei et al., 2020; Wei 
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et al., 2021), daily average PM2.5 concentrations, spatially resolved at a 
1 km × 1 km scale, were produced using artificial intelligence tech-
niques and satellite remote sensing. A Space-Time Extra-Trees (STET) 
model was proposed to estimate PM2.5 concentrations. This model uti-
lizes various data inputs, including the Moderate Resolution Imaging 
Spectroradiometer Multiangle Implementation of Atmospheric Correc-
tion AOD product, pollutant emissions, land use data, and meteorology 
variables. The 10-fold cross-validation (CV) displayed a good and steady 
prediction capacity of the STET model (R2 = 0.90, root-mean-square 
error = 10.01 μg/m3). To assess the influence of long-term exposure, 
we assigned 3-year average PM2.5 concentrations before wave 1 to each 
participant, based on the geocoding of their home addresses. 

2.3. Mediator assessment 

Three main metabolic risk factors, including hypertension, diabetes, 
and dyslipidemia, were assessed at wave 1. Hypertension was identified 
as having systolic blood pressure ≥ 140 mm Hg, diastolic blood pressure 
≥ 90 mm Hg, or a self-reported diagnosis of hypertension at wave 1 (Liu, 
2011). Dyslipidemia status of the participants was defined as total 
cholesterol ≥ 6.22 mmol/L, triglyceride ≥ 2.26 mmol/L, high-density 
lipoprotein cholesterol < 1.04 mmol/L, low-density lipoprotein choles-
terol ≥ 4.14 mmol/L, or self-report of diagnosed hyperlipidemia at wave 
1 (Joint committee for guideline revision, 2018). Diabetes was defined 
by the presence of any of the following: fasting plasma glucose 
≥ 7.0 mmol/L, glycated hemoglobin ≥ 6.5%, or self-report of 
physician-diagnosed diabetes at wave 1 (American Diabetes Association, 

2014). Detailed information on measuring these three metabolic risk 
factors is provided in Supplementary Section 1. Finally, we calculated 
the number of metabolic risk factors (0, 1, and ≥2 [as there were few 
participants with 3 risk factors]) identified at wave 1, which served as 
the mediating variable in the analysis. 

2.4. Depressive symptoms 

Depression symptoms were measured at wave 2 using the Patient 
Health Questionnaire-9 (PHQ-9) (Kroenke et al., 2001; Spitzer et al., 
1999; Zimmerman, 2019), a tool designed for screening depression in 
primary healthcare settings(Negeri et al., 2021; Wang et al., 2014). The 
PHQ-9 consists of nine items, representing the emotional, neuro-
vegetative, and neurocognitive domains of depression (Malhi and Mann, 
2018; Spitzer et al., 1999; Zimmerman, 2019). Each item underwent 
assessment on a 4-point scale, spanning from 0 (indicating not at all) to 3 
(representing nearly every day). In this study, the overall degree of 
depressive symptoms was quantified with the sum score for all nine 
items. Elevated scores on this scale denoted more pronounced and se-
vere depressive symptoms. In addition to overall depressive symptoms, 
we also analyzed emotional symptoms (sum-score for the items of 
depressed mood, anhedonia, feelings of guilt/worthlessness, and ten-
dency to commit suicide), neurovegetative symptoms (sum-score for the 
items of fatigue, sleep disturbance, and weight/appetite change), and 
neurocognitive symptoms (sum-score for the items of psychomotor 
retardation/agitation, and concentration problem). 

Fig. 1. The map of three-year average PM2.5 concentrations and the timeline of study assessments.  
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2.5. Covariates 

Drawing from earlier relevant research on the link between air 
pollution, cardiometabolic factors, and depression (Borroni et al., 2022; 
Braithwaite et al., 2019; Kioumourtzoglou et al., 2017; Lin et al., 2021; 
Shi et al., 2020; van Sloten et al., 2023; Wei et al., 2022; Yang et al., 
2019; Yang et al., 2023; Zhang et al., 2019; Zijlema et al., 2016), we 
incorporated potential confounders into our analysis using directed 
acyclic graphs. Specifically, we considered age, gender, ethnicity, mar-
riage status, education level, annual family income, smoking status, 
secondhand smoke status, alcohol consumption, dietary status, physical 
activity, indoor air pollution, body mass index (BMI), negative life 
events, region, and rural/urban areas. Details of all the confounders can 
be found in Supplementary Table S1. 

2.6. Statistical analysis 

Preliminary analyses explored the relationships between exposure 
(PM2.5), mediators (hypertension, dyslipidemia, and diabetes), and 
outcomes (overall depressive symptoms, emotional symptoms, neuro-
vegetative symptoms, and neurocognitive symptoms). Associations be-
tween exposures and the mediator were assessed with multinomial 
logistic regression models. Negative binomial regression models were 
used to analyze the relationships between exposure-outcome and 
mediator-outcome since PHQ-9 total and subscale scores were right- 
skewed (Fig. S2). Additionally, we investigated the exposure-outcome 
relationships using a restricted cubic spline with 4 knots (3 df) to 
assess the linearity trend. 

This study performed causal mediation analyses to identify potential 
mechanisms in a hypothesized causal pathway between PM2.5 and 
depressive symptoms. Based on a causal counterfactual framework, 
mediation analyses decomposed the total effect (TE) of chronic exposure 
to PM2.5 on depression risk into natural direct effect (NDE) and natural 
indirect effect (NIE) (VanderWeele and Vansteelandt, 2009; Van-
steelandt et al., 2012). The TE denotes the relative risk (RRTE) of 
depressive symptoms associated with a 10 μg/m3 increase in PM2.5 
concentrations as compared with the pre-increase concentrations. The 
NDE can be interpreted as the relative risk (RRNDE) of depressive 
symptoms associated with each 10 μg/m3 increase in PM2.5 concentra-
tions compared with pre-increase concentrations, with the mediator 
fixes at the potential value they would have been in the absence of PM2.5 
concentration increases. The NIE can be interpreted as the relative risk 
(RRNIE) of depressive symptoms if the mediator changes from the value 
they would get under the 10 μg/m3 increase in PM2.5 concentration to 
the value they would get prior to PM2.5 concentration increases, with the 
exposure concentration fixes. The proportion mediated (Hafeman, 
2009) is calculated by RRTE − RRNDE

RRTE − 1 . Mediation analysis was completed 
using natural effect models (Vansteelandt et al., 2012). In addition, ef-
fect modification by individual characteristics, education, and lifestyles 
was also investigated in the mediation approach. This moderation 
analysis aimed to determine whether the magnitude of the direct or 
indirect effects changed across sub-populations of people with different 
characteristics. To evaluate the significance of each modification effect, 
we conducted a likelihood ratio test to compare the model fit with and 
without the corresponding interaction terms. A Benjamini-Hochberg 
false discovery rate (FDR) was calculated to correct for multiple hy-
pothesis testing. The detailed implementation of the mediation 
approach is given in Supplementary Section S2. All mediation analyses 
were completed by natural effect models using the medflex package 
(Steen et al., 2017) in R version 4.1.0. Confidence intervals of TE, NDE, 
and NIE estimations were estimated with a sandwich method. All causal 
mediation analysis relies on the following assumptions (VanderWeele 
and Vansteelandt, 2009; Vansteelandt et al., 2012): no unmeasured 
confounder of exposure-outcome, exposure-mediator, and 
mediator-outcome, and no mediator-outcome confounder affected by 

the exposure. As a sensitivity analysis, we calculated 
Evidence-for-causality values (E-values) to check the assumption of no 
unmeasured confounding in the mediation analysis (Ding and Vander-
Weele, 2016; VanderWeele and Ding, 2017). The E-value is defined as 
the least intensity of an unobserved confounder that needs to be asso-
ciated with both the exposure and the outcome to nullify the study’s 
findings, given the presence of all measured covariates. 

2.7. Sensitivity analysis 

We also performed the following sensitivity analyses. (a)We addi-
tionally allow for potential exposure–mediator interactions. (b)To assess 
the influence of the exposure windows, concentrations of PM2.5 for 2- 
and 4-year averages before wave 1 were used. (c) Missing data rates for 
the study variables ranged from 0% to 2.8%. We also performed analysis 
on 100 datasets that had been multiply imputed via chained equations. 
(d) According to established guidelines (Kroenke et al., 2001; Wang 
et al., 2014), depressive symptoms were also categorized as a binary 
indicator, that probably depression (PHQ-9 score >=5) vs. no such 
indication (PHQ-9 score <5). 

3. Results 

3.1. Descriptive characteristics 

Characteristics of study participants are displayed in Table 1. A total 
of 7794 eligible individuals were included in this study, with a mean age 
at wave 1 of 51.85 (standard deviation [SD]=10.74) years. Approxi-
mately 4666 (59.9%) participants were female, and 7039 (90.3%) were 
married or cohabiting. Participants in high PM2.5 exposure areas had 
higher education and income, lower physical activity, and were more 
likely to consume alcohol or smoke. At wave 1, approximately 35.5% of 
the participants had one metabolic risk factor, and 18.6% had two or 
more metabolic risk factors. A map of three-year average PM2.5 con-
centrations in this study is provided in Fig. 1. 

3.2. Exploratory analyses 

Exploratory analysis results of bivariate associations are shown in 
Supplementary Table S2. For the 10 μg/m3 increase in PM2.5 concen-
trations, the relative risks (RR, 95%CI) of the overall depressive symp-
toms, emotional symptoms, neurovegetative symptoms, and 
neurocognitive symptoms were 1.064 (1.014, 1.116), 1.099 (1.032, 
1.170), 1.053 (1.005, 1.103), and 1.020 (0.939, 1.109), respectively. For 
mediator-outcome relationships, in comparison with participants 
without metabolic risk factors, the RR (95%CI) for every 10 μg/m3 in-
crease in PM2.5 concentrations was 1.091 (1.002, 1.188) for participants 
with 1 metabolic risk factor, and 1181 (1.056, 1.318) for those with 2 or 
more metabolic risk factors. Concerning mediator-outcome relation-
ships, we found significant positive associations between metabolic risk 
factors and depressive symptoms, except for neurocognitive symptoms. 
As the number of metabolic risk factors increased, the relative risks of 
depressive symptoms increased gradually. Concentration-response 
curves show a roughly linear increased trend in depressive symptom 
scores (as well as emotional, neurovegetative, and neurocognitive 
symptom scores) with the increase in outdoor PM2.5 exposure concen-
trations (Fig. 2). 

3.3. Mediation analyses 

The results of mediation analyses are displayed in Table 2. We 
observed that metabolic risk factors partially mediated the associations 
of PM2.5 with depressive symptoms (overall and three symptom sub- 
domain scores). The natural indirect effects of PM2.5 on overall 
depressive symptoms and the three sub-domains were almost identical 
(RR, 1.003–1.004). Metabolic risk factors mediated approximately 
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6.4%, 4.7%, 7.5%, and 14.0% of the associations of PM2.5 with overall 
depressive, emotional, neurovegetative, and neurocognitive symptoms, 
respectively. 

Fig. 3 (and Supplementary Table S3- S6) displays the moderation 
effects of the mediation associations for depression symptoms by indi-
vidual characteristics, education, and lifestyle. Age, gender, education 
level, and alcohol and smoking status significantly moderated natural 
indirect effects and direct effects of PM2.5 on overall depressive symp-
toms (likelihood ratio test for interaction, P int-values<0.02). We 
observed that natural indirect effects mediated by metabolic risk factors 
increased among subjects who were older, female, had lower education, 
and were non-drinking and non-smoking. Meanwhile, natural direct 
effects were attenuated in the respective sub-groups. After correction for 
multiple hypothesis testing using FDR, a significant natural indirect ef-
fect (P_FDR < 0.05) was detected in older age (RR 1.028 [95% CI 
1.01,1.045]), females (1.013[1.005,1.022]) and non-drinking persons 
(1.018[1.007,1.029]). Among those, the mediated proportion reached 
up to 30%. Effect modifications for the three sub-domain symptoms 
were similar to those for overall depression symptoms. 

3.4. Sensitivity analyses 

In this study, the E-values of the associations of the exposure- 
outcome, the exposure-mediator, and the mediator-outcome ranged 
from 1.16 to 1.86. The results implied that the possibility of unmeasured 
confounding among the exposure, mediator, and outcome to distort the 
associations was slight (Supplementary Table S2). To test the statistical 
significance of exposure-mediator interactions, we used P values of the 
likelihood ratio statistic to compare model fit with and without 
exposure-mediator interaction term. The P values of the likelihood ratio 
statistic for the overall and three sub-domain depressive symptoms were 
0.77, 0.81, 0.60, and 0.57, respectively, indicating the absence of 
exposure-mediator interaction. The total, natural direct and indirect 
effects of ambient PM2.5 on depressive risk were similar when using 
different exposure windows (Table S7). The results of multiply imputed 
data were also consistent with the presented results (Table S8). In 
addition, when using a binary indicator (no depression, depression) as 
the outcome variable, we still observed that metabolic risk factors 
mediated approximately 6.7% of the association between ambient PM2.5 
and depression (Table S9). 

Table 1 
Characteristics of study participants, overall and stratified by PM2.5 concentrations.   

Participant group 

Variables overall Individuals with low PM2.5 exposurea Individuals with High PM2.5 exposure 

Population  7794  3926  3868 
Age at wave 1, mean (SD)  51.85 (10.74)  52.71 (9.75)  50.98 (11.60) 
Sex, n (%)       
Male  3128 (40.1)  1317 ( 33.5)  1811 ( 46.8) 
Female  4666 (59.9)  2609 ( 66.5)  2057 ( 53.2) 
Marital status, n (%)       
Married/Cohabiting  7036 (90.3)  3542 ( 90.2)  3494 ( 90.3) 
Never married/ Separated/Divorced/ Widowed  758 ( 9.7)  384 ( 9.8)  374 ( 9.7) 
Education level, n (%)       
Illiteracy  1563 (20.1)  1244 ( 31.7)  319 ( 8.2) 
Primary school  1789 (23.0)  1078 ( 27.5)  711 ( 18.4) 
Junior high school  2244 (28.8)  1010 ( 25.7)  1234 ( 31.9) 
High school  1132 (14.5)  342 ( 8.7)  790 ( 20.4) 
Junior college and above  1066 (13.7)  252 ( 6.4)  814 ( 21.0) 
Annual family income, yuan, n (%)       
< 12 000  1081 (13.9)  737 ( 18.8)  344 ( 8.9) 
12 000–19 999  1190 (15.3)  763 ( 19.4)  427 ( 11.0) 
20 000–59 999  2880 (37.0)  1555 ( 39.6)  1325 ( 34.3) 
60 000–99 999  1347 (17.3)  469 ( 11.9)  878 ( 22.7) 
≥ 100 000  1296 (16.6)  402 ( 10.2)  894 ( 23.1) 
Smoking status, n (%)       
Never smoking  5900 (75.7)  3060 ( 77.9)  2840 ( 73.4) 
Quit smoking  404 ( 5.2)  177 ( 4.5)  227 ( 5.9) 
Smoking  1490 (19.1)  689 ( 17.5)  801 ( 20.7) 
Secondary smoking, n (%)       
No  3836 (49.2)  1805 ( 46.0)  2031 ( 52.5) 
Yes  3958 (50.8)  2121 ( 54.0)  1837 ( 47.5) 
Indoor air pollution, n (%)       
Low  1324 (17.0)  633 ( 16.1)  691 ( 17.9) 
Moderate  6211 (79.7)  3101 ( 79.0)  3110 ( 80.4) 
High  259 ( 3.3)  192 ( 4.9)  67 ( 1.7) 
Alcohol drinking status, n (%)       
Never  4287 (55.0)  2470 ( 62.9)  1817 ( 47.0) 
Occasionally  2471 (31.7)  1026 ( 26.1)  1445 ( 37.4) 
Regularly  1036 (13.3)  430 ( 11.0)  606 ( 15.7) 
Negative life events, n (%)       
0  3924 (50.3)  2006 ( 51.1)  1918 ( 49.6) 
1  2913 (37.4)  1467 ( 37.4)  1446 ( 37.4) 
> =2  957 (12.3)  453 ( 11.5)  504 ( 13.0) 
DASH diet index, mean (SD)  21.31 (4.38)  20.50 (4.02)  22.13 (4.57) 
Physical activity, METs/d, mean (SD)  26.17 (17.73)  30.04 (19.15)  22.24 (15.18) 
BMI, mean (SD)  24.33 (3.35)  24.30 (3.59)  24.36 (3.10) 
Number of metabolic risk factors, n (%)       
0  3583 (46.0)  1712 ( 43.6)  1871 ( 48.4) 
1  2764 (35.5)  1452 ( 37.0)  1312 ( 33.9) 
> = 2  1447 (18.6)  762 ( 19.4)  685 ( 17.7) 

Abbreviations: SD, standard deviation; METs, metabolic equivalent tasks; BMI, body mass index 
a Less than or equal to the median (<= 49.16 μg/m3) is defined as low PM2.5 exposure and vice versa as high PM2.5 exposure. 
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4. Discussion 

In this large, population-based cohort study, chronic exposure to 
PM2.5 was positively associated with an increased risk of depressive 
symptoms. Among the three sub-types of depressive symptoms, PM2.5 
exposure exerted the most harmful effect in the emotional domain. We 
demonstrated that the positive effect of PM2.5 on depressive symptoms 
was partially attributable to the mediating role of metabolic risk factors. 
Furthermore, metabolic risk factors had a stronger mediating effect in 
the elderly, females, and people abstaining from alcohol consumption. 

This study found a positive association between long-term PM2.5 
exposure and the risk of overall depressive symptoms as well as the three 
sub-domain scores. To our knowledge, this is the first epidemiological 
study to examine the effects of PM2.5 on sub-domains of depression. 
Depression is a prevalent mental condition, characterized by symptoms 
in three domains (emotional, neurovegetative, and neurocognitive), 
forming a syndrome and causing functional impairment (Malhi and 
Mann, 2018). Symptoms in the emotional domain are more specific to 
depression, such as depressed mood, anhedonia, and feelings of worth-
lessness or guilt. In contrast, other symptoms, such as the 

neurovegetative domain (e.g., fatigue, weight loss, or insomnia), are 
broadly found in other psychiatric and medical disorders (Malhi et al., 
2014). Interestingly, we observed the strongest harmful effects of 
long-term exposure to PM2.5 on emotional symptoms. Since the conse-
quences of emotional symptoms are more serious and may lead to 
self-harm or suicide, the higher risk of emotional disturbances induced 
by PM2.5 exposure deserves to be taken seriously. This finding also 
strengthens previous evidence on the association between air pollution 
and depression by further specifying the direction of harmful effects. 

Our study focused on the potential role of metabolic risk factors and 
implied that metabolic risk factors partially mediate the relationship 
between PM2.5 and depression. There is some biological evidence of 
metabolic risk factors as an intermediate in the PM-depression pathway. 
Inhaled particulate matter can induce pro-inflammatory mediators, 
oxidative stress, and disruption of the autonomic nervous system, 
leading to metabolic disorders such as hypertension, hyperglycemia, 
and hyperlipidemia (Al-Kindi et al., 2020; Brook et al., 2010). Patients 
with metabolic disorders are often characterized by elevated inflam-
matory cytokines (Eckel et al., 2005). The "cytokine hypothesis of 
depression" proposes that these inflammatory cytokines play a crucial 

Fig. 2. Concentration-response curves regarding the association between long-term exposure to PM2.5 and various types of depression symptom scores. The x-axis 
represents three-year average concentrations of ambient PM2.5. The y-axis indicates estimated depression symptom scores after fixing all covariates at same levels. 
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role in regulating the behavioral, neuroendocrine, and neurochemical 
features of depression (Schiepers et al., 2005). Furthermore, metabolic 
risk factors could result in subclinical vascular impairment (Vykoukal 
and Davies, 2011). The vascular depression hypothesis suggests that 
vascular impairment in the brain may induce depressive symptoms 
(Alexopoulos et al., 1997). Other metabolic disturbances, including 
insulin-glucose homeostasis and adipokine synthesis and secretion, have 
also been associated with the pathophysiological mechanisms of 
depression (McIntyre et al., 2007). 

Considering that the three sub-domain symptoms may be different in 
terms of their underlying etiologies, comorbidities, and response to 
treatment (Majd et al., 2021; Vares et al., 2015), we also conducted 
mediation analyses on the three sub-domain symptoms of depression. 
We found that metabolic risk factors explained approximately 5% of the 
association between PM2.5 exposure and emotional symptoms. Previous 
studies have demonstrated that high levels of cholesterol could reduce 
the fluidity of cell membranes in the central nervous system, which may 
reduce or inhibit the release of 5-hydroxytryptamine (5-HT)(Papakostas 
et al., 2004). Individuals with lower levels of 5-HT are more likely to 
experience depressed emotions and anhedonia(Jenkins et al., 2016). In 
addition, this study found that metabolic risk factors have a higher 
mediating proportion (about 7.5%) concerning neurovegetative symp-
toms. Accumulating evidence shows that some metabolic biomarkers, 
such as leptin (a product of adipocytes), insulin, and vascular endothe-
lial growth factors, could influence vegetative symptoms of depression 
(Caroleo et al., 2019). 

The effect modification in the mediation analysis may help identify 
subgroups with a high magnitude of the mediation effect, thus aiding in 
developing targeted interventions. We observed that the mediation ef-
fect of metabolic risk factors between ambient PM2.5 and depression risk 
was modulated by age, gender, education level, smoking status, and 
alcohol consumption. In this study, a significant natural indirect effect 
was found in female participants only. Prior evidence had suggested that 
biological factors (e.g., lung size, rate of air absorption, sex hormones), 
lifestyle, and activity patterns may contribute to this gender-based dif-
ference (Clougherty, 2010). Our study also showed a larger mediating 
effect in the elderly, which is in line with a previous study that reported 
stronger associations between PM2.5 and metabolic risk factors in older 
adults (Eze et al., 2015; Yang et al., 2022). Interestingly, our study found 
that among those with healthy lifestyles, the PM2.5-induced depressive 
risk was mediated to a greater extent by metabolic risk factors. One 
reason could be that people with healthy lifestyles may be more con-
cerned about their disease status and more likely to be depressed by 

their illness. Another possible explanation is that the effects of air 
pollution on metabolism are greater in this subgroup due to the absence 
of other lifestyle-induced risk factors. 

Causal mediation analysis helps to understand the causal pathways 
from exposure to disease outcome, thereby offering critical insights into 
disease etiology and pathophysiology. At the public health level, 
mediation analysis informs the development of targeted medical and 
public health interventions by identifying critical mediators in the 
causal pathway. The current study underscores the mediating role of 
metabolic risk factors in the causal pathway between PM2.5 and 
depressive symptoms. The proportion of the association between PM2.5 
and the depressive risk mediated by metabolic risk factors can be up to 
30% in some specific populations. These findings could provide valuable 
insights for the development of prevention strategies for depression. As 
metabolic risk factors have effective preventive and management mea-
sures, efforts to reduce metabolic risk factors may have a valuable gain 
in preventing the occurrence and development of depression. On the 
other hand, the disease burden caused by air pollution is not negligible. 
Air pollution is ranked as the fourth leading risk factor for mortality 
worldwide, responsible for approximately 6.67 million deaths in 2019 
(GBD, 2019 Risk Factors Collaborators, 2020). Given the pervasiveness 
of the air pollution effect, reducing the disease burden of air pollution is 
a daunting challenge. There is an urgent need for governments around 
the world to develop effective prevention and intervention policies to 
reduce air pollution exposure levels. People, especially vulnerable 
populations, should prioritize personal protective measures. 

This study has several strengths. It features a prospective design 
including exposure data collection three years prior to wave 1, media-
tors’ collection in wave 1, and outcomes’ collection in wave 2. More-
over, this study also divided symptoms assessed with the PHQ-9 scale 
into three sub-dimensions: emotional, neurovegetative, and neuro-
cognitive. As there are differences in the underlying etiology, course, 
and treatment response of different dimensions, investigating different 
dimensions can provide a more targeted reference for the development 
of interventions (Vares et al., 2015). 

Our study also has several limitations that warrant mentioning. First, 
we assessed residential pollutant concentrations as a proxy for partici-
pants’ air pollution exposure levels without considering individual 
behavior patterns, which may result in exposure measurement bias. 
Second, outcome measures were based on self-report (PHQ-9) rather 
than clinical diagnoses. However, PHQ-9 is a valid and reliable 
screening tool in primary care or large-scale population surveys with 
low costs and good acceptability (Herrman et al., 2022). Finally, 
although this study adequately adjusted for confounders based on the 
literature review, unmeasured confounders, including antidepressant 
medication use and family history of depression, may still play a role. To 
deal with this problem, this study also assessed the effect of potential 
unmeasured confounding, with the result indicating that the probability 
of unmeasured confounder distorting the study’s association appeared 
to be relatively low. 

5. Conclusion 

Our study found a positive relationship between chronic exposure to 
ambient PM2.5 and depressive symptoms. The association between PM2.5 
and depressive symptoms appears to be partially mediated through the 
presence of metabolic risk factors. Our study provided novel insights 
into the mechanisms underlying the association between PM2.5 and 
depressive symptoms. Optimizing treatment of metabolic risk factors 
may, to some extent, contribute to the reduction of the depressive 
burden induced by long-term exposure to PM2.5, especially among the 
elderly, women, and people with healthy lifestyles. 
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