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A B S T R A C T   

The rapid urbanization in central and eastern China has posed a major threat to the green sustainable devel-
opment of the ecological environment. However, the understanding of the interactive coupling mechanism be-
tween urbanization and eco-environmental quality (EEQ) remains to be developed. Understanding their 
interactive coupling mechanism is of great significance to achieve the urban sustainable development goal. By 
using multi-source remote sensing data, we intended to answer “What are the temporal and spatial character-
istics of urbanization and EEQ in the central and eastern regions of China on the pixel scale in the past 24 years, 
and what is the coupling mechanism between the urbanization and the EEQ?”. To answer these questions, we 
improved a pixel-based model (i.e., RSEI-2) to assess the EEQ in China and explored the coupling mechanism 
between the urbanization and the EEQ in central and eastern China with the combination method of mathematics 
and graphics. The results showed that the urbanization and the coupling coordination degree (CCD) of the whole 
region continually increased from 1992 to 2015, especially in the three major urban agglomerations. The CCD of 
the provinces in these regions exhibited a strong spatial dependence, with the spatial distribution pattern of “low 
inside, high outside, high in the east and low in the west”. The EEQ did not change significantly, whilst the three 
major urban agglomerations showed a significant downward trend. Most importantly, this study found that the 
urbanization determined the development of the CCD lying within the critical value. In addition, the improved 
RSEI-2 in this study provided great convenience for monitoring the EEQ in China. This study fills the gap in 
studying the interaction mechanism between the urbanization and the EEQ, and also provides a new perspective 
for the research on the urban sustainable development in China and even the world.   

1. Introduction 

As the largest developing country worldwide, China has been expe-
riencing an unprecedented urbanization development process since the 
establishment of the socialist market economic system (Dou and Kuang, 
2020). Especially, in the central and eastern regions of China, the 

population of these regions accounts for about 98% of the total popu-
lation of China, and the proportion of GDP represents about 87% (Na-
tional Bureau of Statistics, http://www.stats.gov.cn/). The rapid 
urbanization has played an important role in reducing the number of 
people in poverty, promoting economic growth (Henderson, 2003), and 
improving social living standards (Capps et al., 2016) of the region. 
Simultaneously, the rapid increase in the population density and 
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excessive resource consumption have also caused a series of ecological 
and environmental problems, such as land degradation (Abu Hammad 

and Tumeizi, 2012), water shortages (Oo et al., 2020), species extinction 
(McKinney, 2008), frequent natural disasters (Gu et al., 2011), and 
damage to ecosystem services (MafiGholami and Baharlouii, 2019). 
These have been posing a major challenge to achieving the urban sus-
tainable development goal (Jalil et al., 2020). However, the coupling 
mechanism between the eco-environmental quality (EEQ) and the ur-
banization remains to be understood Therefore, scientific methods are 
urgently needed to quantitatively explore the coupling mechanism be-
tween the EEQ and the urbanization in the central and eastern regions of 
China in the past few decades. in order to provide a scientific reference 
for urban planners to formulate universal urban development strategies 
and thus alleviate the potential ecological risks induced by the accel-
erated urbanization development in the future (Kong et al., 2014; Grilo 
et al., 2020). 

As one of the international hotspots in the field of earth science and 
sustainable development science, the research on the interaction and 
coupling mechanism of the EEQ and the urbanization has made great 
progress (Fang et al., 2017; Fan et al., 2020). Currently, related theories 
and methods include the environmental Kuznets curve (EKC) (Fang 
et al., 2015), the planetary boundaries theory (Fanning et al., 2020), the 
tele-coupling theory (Fang and Ren, 2017), the footprint family theory 
(Yang and Meng, 2019), the urban metabolism theory (Beloin-Saint--
Pierre et al., 2017), the STIRPAT model (Yang et al., 2018), the coupling 
coordination degree model (CCDM) (Song et al., 2018) and the 
multi-agent model (Yan et al., 2018). Among them, EKC and CCDM are 
the most widely used models. EKC shows that the urbanization has a 
non-linear impact on the ecological environment, and numerous studies 
have also proved this hypothesis (Chikaraishi et al., 2015; Zhao et al., 
2016; Martínez-Zarzoso and Maruotti, 2011). However, some scholars 
pointed out that the EKC theory was not applicable to all countries, 
especially developing countries (Zhao et al., 2016; Geng and Zhang, 
2020). The main reason is that the EKC theory believes the environment 
and urbanization are independent of each other (Liu et al., 2018a), and 
only considers the impact of urbanization on the environment regardless 
of the environmental effects on the urbanization (Cui et al., 2019). 

Compared with EKC, the CCDM focuses more on describing the 
interaction between two or more subsystems (Fu et al., 2020), which can 
well explain the sustainable development of systems (Fan et al., 2019; 
Cai et al., 2021). At present, numerous scholars have conducted various 
studies about China based on the CCDM (Fang et al., 2016). For example, 
Zhang et al. (Zhang and Li, 2020) studied the coupling relationship 
between the urbanization and geological disasters over the past two 
decades and found that the overall coupling degree of the urbanization 
and the geological disasters exhibited a continuous upward trend in a 
U-form. Chen et al. (2020) analyzed the coupling relationship between 
the carbon emissions and the EEQ during 2009–2015 and found that the 
carbon emissions had a positive effect on the CCD increase, whilst the 
EEQ determined the direction of the coordinated development. Liu et al. 
(2018b) evaluated the CCD status between the urbanization and the EEQ 
in 30 provinces of China during 2005–2015 and found that the coupling 

status gradually improved, which was in line with Lu’s study (Lu et al., 
2019). However, through investigation and summary, it is found that the 
existing relevant studies still have many limitations. 

Firstly, most studies used statistical data as the input parameters of 
the model, resulting in a rough spatial resolution of the research results 
which cannot reflect pixel-level spatial information (Liang et al., 2019). 
Multi-source statistical data can also lead to extremely uncertain results 
(Shao et al., 2020). Secondly, the existing studies are mainly carried out 
on the local scale, and the evaluation system lacks a unified standard, 
integrity and systematicness (Chen et al., 2020; Feng et al., 2021). 
Specifically, most of them often take cities (He et al., 2017), urban ag-
glomerations (Fang et al., 2019) and watersheds (Liu et al., 2021) as the 
study units, which hinders the horizontal comparison of different study 
areas and cannot provide a scientific reference for the sustainable 
development of areas beyond the study area. In addition, the existing 
studies on the coupling between the EEQ and the urbanization still focus 
on the result analysis, and thus this causes the unclear coupling mech-
anism between the EEQ and the urbanization (Fang and Wang, 2013). 

Currently, the rapid development of remote sensing technologies and 
the open access of multi-source remote sensing data have greatly pro-
moted the earth observation research on the regional scale, which also 
provides a new method for regional EEQ monitoring and urbanization 
assessment (Shao et al., 2020; Zheng et al., 2020a). For example, Xu 
(2013a) proposed a remote sensing-based EEQ evaluation model (RSEI) 
in 2013, which is widely used for regional EEQ monitoring due to its 
simplicity and reliability (Shan et al., 2019; Guo et al., 2020). However, 
the RSEI is only applicable to the urban ecological environment quality 
monitoring, and the accuracy of the EEQ monitoring throughout China 
is low (Xu, 2013b). Furthermore, the advantages of nighttime light data 
in characterizing the level of urbanization have been verified (Zheng 
et al., 2020a; Chen et al., 2003). 

The emergence of remote sensing has effectively solved the first 
shortcoming of the above. However, no studies can completely over-
come the remaining three shortcomings. Therefore, in order to provide a 
scientific reference for planners to formulate universal urban develop-
ment strategies, a pixel-based model (i.e., RSEI-2) applicable to the 
regional EEQ monitoring in China is proposed. Thus, the potential 
ecological risks due to the accelerated urbanization development in the 
future can be mitigated. Based on the RSEI-2, CCDM and multi-source 
remote sensing data, this study explores the coupling mechanism be-
tween the EEQ and the urbanization in central and eastern regions of 
China from 1992 to 2015. The main purpose of this paper is to: 1) 
explore the coupling mechanism of the EEQ and the urbanization in the 
central and eastern regions of China on the pixel scale, 2) explore the 
characteristics of temporal and spatial changes and distribution patterns 
of the EEQ, the urbanization, and the coupling coordination degree 
(CCD) in the central and eastern regions of China over the past 24 years, 
3) improve the RSEI model and establish a regional EEQ assessment 
model applicable to China. This study overcomes the shortcomings in 
the existing research and also fills the gaps among the research on the 
coupling mechanism between the EEQ and the urbanization. 

This article is organized as follows: following the Introduction, Sec-
tion 2 describes the study area and data, Section 3 introduces the 
research methods, Section 4 presents the results and discussion, Section 
5 demonstrates the coupling coordination mechanism and simulates 
future coupling coordination degree, and Section 6 summarizes this 
research. 

2. Study area and data 

2.1. Study area 

Relying on natural geographical advantages, China’s central and 
eastern regions’ economy (except for Xinjiang Uygur Autonomous Re-
gion, Tibet Autonomous Region, and Qinghai Province) has experienced 
rapid economic growth, rapid population growth, and continuous 

Abbreviations 

EEQ eco-environmental quality 
CCDM coupling coordination degree model 
CCD coupling coordination degree 
RSEI remote sensing ecological index 
RSEI-2 remote sensing ecological index-2 
GEE Google Earth Engine.  
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urbanization during 1992–2015. Simultaneously, the eco-environment 
problems during the regional development process are not optimistic. 
Therefore, this study takes the central and eastern regions of China as 
the study area to explore the coupling mechanism between the EEQ and 
urbanization. 

The study area is bordered by the East China Sea in the east, the 
South China Sea in the south, the three provinces of Xin-Qing-Xi in the 
west, and Mongolia and Russia in the north (Fig. 1). The study area has a 
rich ecosystem, e.g., three major forestry districts of China (Bai et al., 
2018). Additionally, there are three characteristic features in nature 
aspects: the Inner Mongolia Plateau contains the richest grassland re-
sources in China (Wang et al., 2017a); the North China Plain and the 
Middle and Lower Yangtze River Plains, as important grain producing 
areas in China, provide a rich farmland ecosystem (Wang et al., 2017b); 
and in addition to the large and small lakes, constitute the rich and 
complex wetland ecosystem (Mao et al., 2018), as well as two important 
ecological barriers in China, the Yangtze River and the Yellow River, 
that play an important role in maintaining biodiversity, alleviating 
water shortages, flood control, and irrigation (Yu et al., 2018). In 
addition, the study area includes three major urban agglomerations, i.e., 
the Yangtze River Delta urban agglomerations with the most economi-
cally dynamic resource allocation center, the Beijing-Tianjin-Hebei 
urban agglomerations in the national ecological restoration and envi-
ronmental improvement demonstration zone, and the Pearl River Delta 
urban agglomerations in the pioneering area of China’s open innovation. 
The three urban agglomerations are becoming the pioneers of China’s 
sustainable development. As of 2019, this study area has 97.59% in the 
proportion of China’s total population, and it is 87.27% in China’s GDP 
proportion (National Bureau of Statistics, http://www.stats.gov.cn/). 

2.2. Study data 

The researchers of this study mainly collected the administrative 
division data (National Earth System Sci), Landsat surface reflectance 
data, MOD09A1 surface reflectance data, MOD11A2 land surface tem-
perature data, the national county Ecological Index (EI) data, the 
nighttime light data from DMSP/OLS and VIRRS-NPP, the land use and 
land cover data (LULC), and 1-km national population density data 
(POP) during 2015. Here, the administrative division data are down-
loaded from the National Catalogue Service for Geographic Information; 
the Landsat and MODIS data is downloaded from the National Aero-
nautics and Space Administration; the EI data is provided by the Min-
istry of Ecology and Environment of the People’s Republic of China; the 
nighttime light data is obtained from Zhou’s paper (Li et al., 2020); the 
LULC data is available from Yu’s paper (Xu et al., 2020), and the POP 
data is downloaded from Resource and Environment Science and Data 
Center. More detailed information about these data can be described in 
Table 1. 

3. Methods 

Fig. 2 displays the framework for calculating CCD in this study, and 
the detailed steps are as follows: (1) we performed preprocessing of 
cloud removal, splicing, striping, clipping, synthesis and resampling (1 
km) on the Landsat image data; (2) we calculated greenness (NDVI) 
(Tucker, 1979), dryness (NDBSI) (Rikimaru et al., 2002), heat (LST) 
(Ermida et al., 2020), and humidity (WET) (Crist, 1985) indexes based 
on the preprocessed annual average Landsat surface reflectance data, 
and also calculated the above four indexes using the MODIS data, which 
are used to fill in missing values for the Landsat pixels; (3) we calculated 
the abundance index of land cover types (LCTAI) in the study area from 

Fig. 1. Spatial location map of the study area.  
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1992 to 2015 based the LULC data referring to the “Technical Criterion 
for Ecosystem Status Evaluation” (192-2015 and Technical Cr, 2015); 
(4) the five calculated indexes, sequentially were standardized, syn-
thesized, and executed the principal component analysis (PCA), and the 
PC1 band was the EEQ index, namely RSEI-2 after the PCA operation; 
and (5) the CCD data between the EEQ and urbanization in the study 
area during 1992–2015 was obtained when the RSEI-2 and the night-
time light data were added into the CCD model after the consistency 
processing. 

3.1. Evaluation of the eco-environment quality 

On the basis of the original RSEI model, this study developed a new 
EEQ evaluation model for remote sensing data, namely RSEI-2 at the 
regional scale: 

RSEI− 2 =
PC1 − PC1min

PC1 − PC1max
(1)  

PC1=PCA(NDVI,NDBSI,LST,WET,AI) (2)  

where RSEI-2 was the EEQ index, PC1 was the first principal component, 
PC1min was the minimum value of PC1, PC1max was the maximum value 
of PC1, and NDVI, NDBSI, LST, WET, and AI were greenness, dryness, 
heat, humidity, and abundance index for land cover type, respectively. 
The traditional RSEI model was often used to monitor the EEQ at the 
local scale. Additionally, a small number of scholars (Liao and Jiang, 
2020) adopted the RSEI model to evaluate the China’s EEQ, but none of 
them considered the RSEI model’s applicability at the regional scale. 
The results caused significant problems for the research conclusions. 
Therefore, this study improved RSEI, i.e., RSEI-2 and then evaluated the 
applicability of the RSEI and RSEI-2 models in China. The results are 
shown in section 4.1. 

Specifically, the EI index calculation greatly depended on the 
abundance index of land cover types, while four of the aforementioned 
indexes in the RSEI model did not involve the important evaluation 
factor. Therefore, after referring to the “Technical Criterion for 
Ecosystem Status Evaluation” (192-2015 and Technical Cr, 2015), we 
calculated the abundance index for land cover types (AI) in the study 
area during 1992–2015 based on the LULC data. The AI was calculated 
as follows: 

AI = μ × (0.35 × Forest + 0.21 × Grassland + 0.28 × Water+
0.11 × Cropland + 0.04 × Built + 0.01 × Unused)/Area (3)  

where AI was the abundance index for land cover types, μ was the 
normalized coefficient, Forest, Grassland, Water, Cropland, Built, and 
Unused were the area of forest land, grassland, waterbody, cropland, 
built-up, and unused land, respectively, and Area was the total area of 
the statistical area. 

The land surface temperature (LST) index was calculated from the 
open-source code (the SMW algorithm) provided by Ermida et al. (2020) 

at the Google Earth Engine (GEE) platform (Gorelick et al., 2017). 
Additionally, the WET index calculation for the MODIS data referred to 
the Index DataBase (https://www.indexdatabase.de/). The WET index 
was calculated as follows: 

WETMODIS = 0.1509 × Blue + 0.1973 × Green + 0.3279 × Red+
0.3406 × NIR − 0.7112 × SWIR1 − 0.4572 × SWIR2 (4)  

where WETMODIS was the WET index, Blue, Green, Red, NIR, SWIR1, and 
SWIR2 were the blue, green, red, near-infrared, short-wave infrared 1, 
and short-wave infrared 2 bands for MOD09A1 data, respectively. 

3.2. Evaluation of urbanization 

Numerous scholars have quantitatively evaluated urbanization using 
remote sensing data. Among them, the CNLI model proposed by Chen 
et al. (LiShi and Jin, 2003) was widely used in the regional urbanization 
monitoring. The CNLI model reflects the urbanization level of the area at 
two attributes: the average light intensity and the light area. The CNLI 
was calculated as follows: 

CNLI = I × S (5)  

I =
∑63

i=1
DNi ×

ni

N × 63
(6)  

S=
AreaN

Area
(7)  

where CNLI was the urbanization index, I was the average light in-
tensity, S was the light area, DNi was the light gray value of the i-th level, 
ni was the number of pixels of the i-th level gray value, N was the total 
number of the light pixels, AreaN was the total area of the light pixels, 
and Area was the total area. 

3.3. The CCD model 

The CCD between the EEQ and urbanization determined the urban 
sustainable development’s direction (Seto et al., 2010). This study 
explored the coupling mechanism between the EEQ and urbanization in 
the central and eastern regions of China using the CCD model. The CCD 
model was calculated as follows: 

C={
U × E

[(U + E)/2]2
}

1
2 (8)  

where C was the coupling degree between the EEQ and urbanization, C 
ranged from 0 to 1, U was the urbanization index, namely CNLI, and E 
was the EEQ index, namely RSEI-2. 

In order to avoid the phenomenon of “the false coordination”, that is, 
the phenomenon that U and E were both low but C was high, the CCD 
model was improved on the basis of the coupling degree: 

Table 1 
The detailed descriptions of the study data.  

Data name Spatial resolution Time resolution Source Function 

The administrative division data 1: 1 million 2015 NCSFGI.a Use basic base map data and perform zonal statistics 
Landsat5, 7, and 8 30 m 16-Day USGS.b Calculate the E index 
MOD09A1 500 m 8-Day USGS.b Calculate the E index 
MOD11A2 1000 m 8-Day USGS.b Fill missing LST for Landsat pixels 
EI County unit 2015 MEEPRCc Evaluate RSEI and RSEI-2 indexes 
The nighttime light data 1000 m Annual Paper (Li et al., 2020) Calculate the U index 
LULC 1000 m Annual Paper (Xu et al., 2020) Calculate the AI index 
The POP. data 1000 m 2015 RESDC.d Divide the cities into different sizes  

a National Catalogue Service for Geographic Information. (https://www.webmap.cn/). 
b United States Geological Survey. (https://earthexplorer.usgs.gov/). 
c Ministry of Ecology and Environment of the People’s Republic of China. (http://www.mee.gov.cn/). 
d Resource and Environment Science and Data Center. 
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D=
̅̅̅̅̅̅̅̅̅̅̅̅̅
C × T

√
(9)  

T =αU + βE (10)  

where D was the CCD ranging from 0 to 1 where the higher D indicated 

the higher the level of coordinated development between EEQ and ur-
banization, T was the comprehensive evaluation index of U and E, α and 
β were the weights of U and E, respectively, where α +β = 1. Because the 
EEQ and urbanization had the same interaction, α and β were set as 0.5 
in this study, respectively. 

Fig. 2. The technology roadmap for this study. (a) The framework for evaluating the coupling coordination degree (CCD): the content in the yellow area is to obtain 
the eco-environment evaluation index, the content of the light blue area is to calculate the RSEI-2, and the content of the light green area is processing processes for 
the nighttime light data; (b) a case for calculating the CCD during 2015. The standard of standardization in this study is to take the maximum and minimum values of 
all data of each index from 1992 to 2015 as the standardized extreme values. 
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3.4. The trend analysis method 

This study quantified the time change rate of the EEQ, urbanization, 
and the CCD in this study during 1992–2015 using the trend analysis 
method (Tian et al., 2015). The calculation formula was as follows: 

Slope=
n ×

∑n

i=1
i × Yi −

∑n

i=1
i
∑n

i=1
Yi

n ×
∑n

i=1
i2 − (

∑n

i=1
i)2

(11)  

where n was the number of years and was set to 24 in this paper, I was 
the serial number of the year, Yi was the Y index value of the i-th year, 
and slope was the slope of the index change where when slope was 
positive, the index will present an increasing trend; on the contrary, it 
will have a downward trend. 

4. Results 

4.1. Regional adaptation assessment of RSEI and RSEI-2 

Using the method in Section 3.1, we calculated the RSEI and RSEI-2 
values of each district and county’s study area and then evaluated the 
RSEI and RSEI-2’s regional adaptability compared to the EI data (see 
Fig. 3). We found from Fig. 3 (left) that the RSEI index was significantly 
underestimated from the bias value and the deviation between the 
fitting line and the 1:1 line, and the underestimation degree could reach 
24%. Additionally, the RSEI was reasonable to some extent in terms of 
the RMSE (0.27 [27%]) and the R2 (0.55). However, the proposed RSEI- 
2 model improved underestimation phenomenon using the original 
model (Fig. 3 right), and the degree of underestimation decreased from 
24% to 5%. The RSEI-2’s accuracy had also significantly improved with 
an RMSE of 0.11 (11%) and R2 of 0.71. This suggested that the RSEI-2 
model’s accuracy was better than that of the RSEI model for moni-
toring EEQ at the national regional scale. Therefore, this researcher 
chose the RSEI-2 model to calculate the EEQ in the study area. 

4.2. Spatiotemporal dynamic changes 

Overall, urbanization and CCD for the entire study areas both 
exhibited an increasing trend during 1992–2015 with growth rates of 
0.0017a− 1 and 0.0011a− 1, respectively, while the RSEI-2’s change was 
not obvious, and its growth rate was 1.21E− 10a− 1 (see Fig. 4 left and 
Table 2). Additionally, the urbanization and CCD values both showed a 
strip-like distribution with a gradual decrease trend from east to west. 

However, the value of RSEI-2 showed a decreasing trend from south to 
north. This suggested that the EEQ was better in the south and worse in 
the north. This is consistent with the distribution pattern of vegetation 
coverage in China. There are large areas of dense forests in southern 
China. Rich vegetation ensures the water conservation capacity of the 
region, inhibits the rise of surface temperature, alleviates regional water 
and soil loss and plays an important role in the regional ecological 
environment. Shandong Province and Jiangsu Province had the worst 
EEQ in coastal areas (Fig. 4. H). According to the data released by the 
China Statistics Bureau, Shandong Province and Jiangsu Province are 
the top two provinces of power consumptions in China. Huge energy 
consumption intensifies the risk of ecological environment deteriora-
tion, and these areas lack dense vegetation and efficient ecological 
restoration capacity. The spatial distribution differences for the three 
indexes exhibited the same characteristic of weakness in the west and 
strong in the east (Fig. 4 right). At province level, the urbanization and 
CCD values for most provinces fluctuated very little, and their rate of 
change ranged from 0.0003a− 1 to 0.0059a− 1 and 0.0002a− 1 to 
0.0186a− 1, respectively. Additionally, although the RSEI-2 value was 
basically unchanged with its range of − 0.0024a− 1-0.0013a− 1, the 
average value of RSEI-2 varied greatly for the various provinces, 
showing a distribution pattern with a small value in the northern 
provinces and a large value in the southern provinces (Fig. 4 left and 
Table 2). This indicated that the urbanization and CCD at province levels 
had relatively small spatial variabilities, but the CCD had relatively large 
spatial variabilities. 

The growth area for urbanization was mainly distributed in the 
eastern coastal areas of China, such as the Beijing-Tianjin-Hebei urban 
agglomerations, the Yangtze River Delta urban agglomerations, and the 
Pearl River Delta urban agglomerations (the yellow area in the map in 
Fig. 5c). This was mainly due to the advantageous geographical location 
and the promotion of reform and migration policies (Du et al., 2018). 
Coastal cities are mostly regional central cities or administrative centers, 
which have attracted a large number of immigrants and investment in 
the recent 24 years, bringing power and resources to the urbanization. 
The rapid growth of economy and population, as well as the expansion 
of impervious surface, have led to the increase of urbanization in the 
region. Simultaneously, the areas with the most serious 
eco-environment deterioration were also concentrated in the three 
major urban agglomerations in China (red area in the map in Fig. 5b), 
particularly the Pearl River Delta urban agglomerations. This is consis-
tent with the research results of Zheng et al. (2020b). With the rapid 
economic development and urban expansion, the impervious surface 
increasingly occupies more ecological lands on the urban scale, resulting 

Fig. 3. The regional adaptation assessment results for the RSEI and the RSEI-2 using the standardized EI index.  
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in the decline of vegetation coverage, which has a great impact on the 
EEQ. This suggested that rapid urbanization would lead to 
eco-environmental deterioration. Surprisingly, the CCD values for the 
three major urban agglomerations and their surrounding areas were still 
increasing (red area in the map in Fig. 5a). This indicated that deterio-
ration of the eco-environment at this stage had no significant impact on 
the region’s coupling coordinated development. 

4.3. The CCD distribution at different city levels 

We divided the CCD into 9 types according to the standards in 
Table 3. Then, we compared cities’ CCD distributions at different sizes. 
Additionally, according to the city scale classification standard issued by 
the “Notice on Adjusting the Criteria for City Size Classification” (Notice 
of the State Counc, 2015), we divided 331 cities into five categories: 
megacity (MC), supercity (SC), large city (LC), medium-sized city (MSC), 
and petty city (PC). 

Fig. 6 shows cities’ coordinating changes in central and eastern 
China from 1992 to 2015. Overall, the coordinated cities’ spatial dis-
tributions and increases had a strong economic pattern. Specifically, the 
number of coordinated cities (CD) increased from 24 (7.25%) to 99 
(29.91%; Fig. 6b) from 1992 to 2015. The coordinated MCs (46.67%) 
and SCs (42.31%) had the most significant increase, and the coordinated 
LCs, MSCs, and PCs also increased to a certain extent with the increasing 
proportions being 15.35%, 7.14%, and 13.64% (the green fold line in 
Fig. 6b), respectively. This implied that the coordinated cities’ increases 
mainly existed in cities of LC size. Additionally, the MCs had the largest 
growth rate of the average CCD from 1992 to 2015, reaching 39.21/ 
10− 4a, which was twice that of PCs, followed by the SCs (38.87/10− 4a; 
the orange fold line in Fig. 6b). This indicated that the larger the city 
scale, the faster the degree of coupling harmony increases. In addition, 
as of 2015, coordinated cities were mainly distributed in MCs (11), SCs 
(42), and LCs (40), accounting for 73.33%, 53.85%, and 19.80%, 
respectively, (the magenta fold line in Fig. 6b). Among the 99 

Fig. 4. Spatiotemporal distributions of the CCD, RSEI-2, and urbanization at provincial-scale during 1992–2015. Sub-figures (a), (d), and (g) represent the change 
trend of the CCD, urbanization, and the RSEI-2 for each province during 1992–2015, respectively; sub-figures (b), (e), and (h) display the spatial distributions of the 
CCD, urbanization, and RSEI-2 during 1992–2015, respectively; and sub-figures (c), (f), and (i) show the standard deviations’ spatial distributions of the CCD, 
urbanization, and RSEI-2 during 1992–2015, respectively. 
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coordinated cities, 16 coordinated cities were located in Shandong 
province, while the cities of Chengdu, Wuhan, Ezhou, and Weinan were 
the few coordinated cities located in the inland provinces (the blue and 
purple points in Fig. 6a). This suggested that the coordinated cities’ 
spatial distributions mainly were mainly located in cities at LC size. 

During 2015, only 12 out of 331 cities had lagged urbanization in 
terms of EEQ, including 3 MCs, 4 SCs, 3 LCs, and 2 PCs (Hong Kong and 
Macao), accounting for 25%, 5.71%, 1.53%, and 10.53% of their 
respective city size groups (the purple fold line in Fig. 6c), respectively. 
This suggested that EEQ outperforms urbanization for the values at 

different city sizes. Additionally, urbanization growth rate for PCs was 
the slowest (24.16/10− 4a), while that for MCs was the highest (88.84/ 
10− 4a; the orange-red fold line in Fig. 6c) during 1992–2015, and this 
was 3.67 times of that of SCs. This indicated that the larger the city size, 
the faster the urbanization rate. However, MCs exhibited the fastest 
deterioration of the eco-environment (− 5.06/10− 4a), while the EEQ 
growth for PCs showed the fastest trend (6.12/10− 4a; the green fold line 
in Fig. 6c). This reflected the urbanization level and the EEQ’s incon-
sistency direction. 

Table 2 
The change rates (a− 1) of the CCD, RSEI-2, and urbanization for each province and the entire study areas.  

Province CCD RSEI-2 Urbanization Province CCD RSEI-2 Urbanization 

Beijing 0.0025 − 0.0010 0.0073 Hubei 0.0011 0.0008 0.0015 
Tianjin 0.0052 − 0.0012 0.0124 Hunan 0.0009 0.0004 0.0012 
Hebei 0.0023 0.0002 0.0033 Guangdong 0.0026 0.0002 0.0045 
Shanxi 0.0014 0.0004 0.0019 Guangxi 0.0010 0.0009 0.0011 
Inner Mongolia 0.0002 − 0.0009 0.0003 Hainan 0.0025 0.0006 0.0029 
Liaoning 0.0017 0.0000 0.0027 Chongqing 0.0013 0.0013 0.0020 
Jilin 0.0008 − 0.0004 0.0012 Sichuan 0.0006 0.0001 0.0008 
Heilongjiang 0.0005 − 0.0004 0.0007 Guizhou 0.0007 0.0009 0.0010 
Shanghai 0.0059 − 0.0024 0.0186 Yunnan 0.0006 0.0007 0.0008 
Jiangsu 0.0057 − 0.0006 0.0106 Shaanxi 0.0013 0.0009 0.0018 
Zhejiang 0.0044 − 0.0001 0.0074 Gansu 0.0002 − 0.0003 0.0004 
Anhui 0.0024 0.0009 0.0032 Ningxia 0.0011 − 0.0005 0.0020 
Fujian 0.0022 0.0006 0.0032 Taiwan 0.0025 0.0000 0.0050 
Jiangxi 0.0010 0.0009 0.0013 Hongkong 0.0008 0.0001 0.0025 
Shandong 0.0041 − 0.0001 0.0061 Macao 0.0021 0.0000 0.0081 
Henan 0.0030 0.0009 0.0038 Study area 0.0011 1.21E− 10 0.0017  

Fig. 5. Spatial distributions of the CCD’s change rates (a), RSEI-2 (b), and urbanization (c) in China’s central and eastern regions during 1992–2015.  

Table 3 
Criteria for classifying CCD types.  

Range of CCD U and E The coordination type Flags 

0 ≤ CCD< 0.15 E − U < − 0.05 EI UD. (E lags) 
E − U > 0.05 E2 UD. (U lags) 
|E − U | ≤ 0.05 E3 UD. (U & E are in balance) 

0.15 ≤ CCD< 0.35 E − U < − 0.05 E4 MD. (E lags) 
E − U > 0.05 E5 MD. (U lags) 
|E − U | ≤ 0.05 E6 MD. (U & E are in balance) 

0.35 ≤ CCD<1 E − U < − 0.05 E7 CD. (E lags) 
E − U > 0.05 E8 CD. (U lags) 
|E − U | ≤ 0.05 E9 CD. (U & E are in balance) 

UD (Uncoordinated, UD)、MD (Moderate-coordinated, MD)、CD (Coordinated, CD). 
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4.4. Spatial dependency of CCD 

This study explored the CCD spatial clustering characteristics at the 
“city” units during 1992, 2004, and 2015 using the local autocorrelation 
analysis method (Ord and Getis, 2001). Fig. 7 showed that the Moran’s I 
value for each year was higher than 0.69; the scatter points were mainly 
distributed in the first and third quadrants. This indicated that the CCD 
values’ spatial distributions presented a strong agglomerations feature, 
i.e., the cities with high (low) CCD values were inclined to cluster. 
Simultaneously, the CCD distribution exhibited a pattern of “low in the 
West and high in the East”, that is, the LL type cities were mainly 
distributed in the inland China, while the HH type cities were mainly 
distributed in Beijing Tianjin Hebei, Yangtze River Delta, and Pearl 
River Delta urban agglomerations (P < 0.05, the significance distribu-
tion maps in Fig. 7). 

4.5. Relationships among RSEI-2, urbanization, and CCD 

We ranked 331 cities in China’s central and eastern regions in reverse 
order (see Fig. 8). Each bubble represented a city, and the size of each 
bubble was mapped to the CCD’s change rate of each city with the lowest 
value of 0a− 1 and the highest value of 0.0111a− 1. By fitting all the cities’ 
sample points, we found that it presented a negative correlation rela-
tionship between the urbanization development and EEQ (fitting curve 
in the middle of Fig. 8). This indicated that urbanization development 
had a negative impact on the EEQ. Therefore, paying attention to the 
ecological environment’s protection is essential for urban sustainability 
development in the future. 

In addition, Fig. 8 draws a fold line chart of urbanization’s trend 
ranking, the EEQ, and CCD at 331 cities. We found that the relationship 
between the urbanization trend ranking and CCD trend ranking pre-
sented “tortuous rise” with the fitting line’s slope rate being 0.979 and 

R2 being 0.96. This indicated that the faster the urbanization develop-
ment, the faster the CCD level, but the EEQ and CCD trend rankings both 
showed an abnormal negative correlation. Therefore, we speculated that 
urbanization development at this stage was a decisive factor affecting 
the CCD level, and the EEQ’s excessive growth would have a negative 
impact on the CCD level. 

5. Discussion 

5.1. Analysis of coupling mechanism between urbanization and RSEI-2 

Based on the analysis in Section 4.5, we speculated that: 1) at this 
stage, urbanization determined the CCD level-development, and the 
EEQ changes had little effect on the CCD level. 2) There was a linear 
negative relationship between urbanization and EEQ. In order to 
quantitatively prove the above conjecture, we evenly selected 6060 
sample points from the CCD, RSEI-2 and the urbanization data in 2015. 
Then, we drew a three-dimensional distribution diagram of the sample 
points and a three-dimensional function diagram of the CCD model 
(Fig. 9). Finally, we characterized the urbanization and EEQ’s degree of 
influence on the CCD using the tangent plane’s slope in urbanization and 
the RSEI-2’s two dimensions. The tangent plane was calculated as 
follows: 

CCD − CCD0 = F′

U(U − U0) + F′

E(E − E0) (12)  

where CCD was CCD, F’u, and F’e were the urbanization and RSEI-2’s 
partial derivatives, respectively, and CCD0, U0, and E0 were the CCD’s 
mean values, urbanization, and the EEQ during 2015, where their values 
were 0.445, 0.074, and 0.532, respectively. 

As can be seen from Fig. 9 (right), the CCD’s growth rate in the ur-
banization component is 1.505, while that in the RSEI-2 component is 
only 0.209, i.e., urbanization impact on the CCD is 7.2 times of the EEQ 

Fig. 6. The coupling type changes of the cities in China’s central and eastern regions from 1992 to 2015: a. spatial distribution map of the cities’ coupling types at the 
different city sizes during 2015; b. the number of different city coupling types at different city sizes during 2015 (histogram), the CCD change rates of cities at 
different city sizes during 1992–2015 (orange red fold line), the CD percentage at different city sizes during 2015 (magenta fold line), and the CCD increase per-
centage at different city sizes during 1992–2015 (green fold line); and c. the number of cities in U lags and E lags at different city sizes during 2015, the change rate of 
the RSEI-2 (green fold line) and urbanization (orange-red fold line) at different city sizes during 1992–2015, and the number of the U lags converted to E lags cities 
(magenta fold line) at different city sizes from 1992 to 2015. 
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during 2015. This well confirmed the first conjecture above. Simulta-
neously, we found an important feature from Fig. 9 (left) that there was 
an obvious negative correlation between urbanization and the EEQ. This 
implies that urbanization and the RSEI-2 cannot be arbitrarily distrib-
uted in entire three-dimensional spaces. Instead, they restrict each other 
and are regularly distributed in space. Therefore, we calculated the 
RSEI-2, urbanization, and CCD data for the 29 provincial capital cities 
(including municipalities directly under the Central Government) and 
the entire study areas during 2015, and then we fitted the relationships 
between the EEQ and urbanization for these 30 research objects. The 
results show that there is a negative linear correlation between the EEQ 
and urbanization, confirming the second conjecture mentioned above. 

The researchers posed the following question: does urbanization 
have a continuous, decisive, and positive impact on the CCD at a deeper 
level? Based on the conclusions obtained above, we derived formulas 8, 
9, and 10 as follows: 

C = {
U × E

[(U + E)/2]2
}

1
2⇒C =

̅̅̅̅̅̅̅̅̅̅̅̅̅
U × E

T2

√

⇒C =

̅̅̅̅̅̅̅̅̅̅̅̅̅
U × E

√

T

D =
̅̅̅̅̅̅̅̅̅̅̅̅̅
C × T

√
⇒D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅
U × E

√

T
× T

√

⇒D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅
U × E

√
√

⇒D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
U × (− A × U + B)

√√

 (A > 0  ,  0 ≤ U ≤ 1)

(13)  

where the A term characterized the interaction strength between 
regional urbanization and the EEQ. The above derivation results indi-
cated that the D and U presented a downward-opening parabolic rela-
tionship, i.e., the CCD presented a unimodal characteristic of “increasing 
first and then decreasing” with urbanization growth. This meant that 
urbanization development could not always have a positive impact on 
the CCD level. 

Fig. 10 shows the function diagrams of the relationship between 
urbanization and the CCD for 30 study objects. In Fig. 10, the red dashed 

Fig. 7. The local Moran scatterplots (the top of the figure), local autocorrelation cluster maps (the middle of the figure), and CCD’s significance (the bottom of the 
figure) distribution maps at the city scale during 1992, 2004, and 2015. 
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line is the function’s axis of symmetry, and the urbanization value 
corresponding to the axis of symmetry represents the turning point 
where the CCD value changes from an increase to a decrease under the 
current development status. Additionally, it can be seen from the sym-
metry axis’s calculation formula that the symmetry axis and A show a 
negative correlation relationship in Eq. (13). This suggests that the 
symmetry axis will continue moving to the left as A increases. Therefore, 
the axis of symmetry can be set as a parameter representing the inter-
action strength between urbanization and the regional EEQ, and its 
numerical value controls the urbanization value interval that has a 
positive impact on the CCD. Additionally, Fig. 10 shows that there is a 
significant difference for the symmetry axis’s distribution of each city. 
This suggests that it has a greatly different for the positive urbanization 
impact on the CCD at the different cities. For example, Haikou, Chang-
chun, and Shenyang have relatively strong regulatory capabilities, while 
Beijing, Hangzhou, Fuzhou, and Guangzhou have relatively weak reg-
ulatory capabilities. 

It is worth noting that the symmetry axis for some cities in Fig. 10 
exceeds 1, and the range of U is between 0 and 1. Does this mean that 
these cities can arbitrarily speed the pace of urbanization development 
and ignore the ecological environment’s protection? It should be noted 
that the relationship curve between urbanization and the CCD depends 

on the interaction strength between the EEQ and urbanization. The A of 
the relationship curve should also increase, and the axis of symmetry 
should accordingly decrease if the ecological environment’s protection 
is neglected in the urbanization process. When the axis of symmetry is 
less than 1, urbanization development will threaten the CCD level. 
Therefore, the ecological environment’s protection cannot be ignored 
during the urbanization process, especially in cities whose symmetry 
axis is between 0 and 1. 

In summary, we successfully proved the two conjectures proposed at 
the beginning of this section by using a rigorous method of combining 
mathematics and geometry. Simultaneously, we further proved that 
continuous urbanization development could not have a continuous 
positive impact on the CCD level. We hope that by exploring the 
coupling mechanism between the EEQ and urbanization, this study can 
assist scholars in implementing more in-depth research on related as-
pects in the future. 

5.2. Prediction of future CCD 

The CCD’s future developmental direction between the EEQ and 
urbanization in China’s central and eastern regions has important 
reference significance for the China 2030 Sustainable Development 

Fig. 8. The scatterplots between the ordered city RSEI-2 and the ordered city urbanization in central and eastern region of China during 1992–2015.  

Fig. 9. The 3D scatter diagram for the RSEI-2, urbanization, and CCD during 2015 and the 3D function diagram of the CCD model.  
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Goals realization. The Hurst index (Davies and Harte, 1987) has ad-
vantages in measuring self-similarity and long-term dependence of the 
index time series. The methods for estimating the Hurst index include 
R/S analysis, wavelet analysis, whittle method, residual variance 
method, absolute value method, and aggregate variance periodogram 
method (Bhattacharya et al., 1983; Carbone et al., 2004). Thus, this 
study predicts the CCD’s future changes in central and eastern regions of 
China based on the CCD’s change trend during 1992–2015 using R/S 
analysis method. 

It can be seen from Fig. 11 that the regions with significant long-term 
CCD dependence are mainly distributed in China’s three major urban 
agglomerations and Taiwan. Additionally, the change types are mainly 
red and blue. This indicated that the CCD in most areas increased in the 

past, and this is consistent with the results in Section 4.2. The four re-
gions all show large areas of CCD reduction in the future (blue and 
cyan), particularly in the Beijing-Tianjin-Hebei urban agglomerations, 
the inner Pearl River Delta urban agglomerations, northern Jiangsu, and 
the three cities of Taipei, Tainan, and Taichung. 

Fig. 12 shows that the area, the area percentage and the cumulative 
frequency of different Hurst values of Beijing-Tianjin-Hebei Province, 
the Pearl River Delta, the Yangtze River Delta urban agglomerations and 
Taiwan. It can be seen from Fig. 12 that in terms of the development 
trend, most areas in the Pearl River Delta, the Yangtze River Delta urban 
agglomerations and Taiwan showed an increasing trend in the CCD, and 
UU types played a dominant role. Among them, Taiwan exhibited the 
highest increase in the CCD area (61.85%), followed by the Yangtze 

Fig. 10. The function diagram of the relationship between urbanization and the CCD. It should be noted that the function graph shows the relationship between CCD 
and urbanization in space in each city in 2015, not the relationship in time. The pink dotted line is the symmetry axis of the function curve, i.e., the turning point of 
the CCD from increasing to decreasing. When the axis of symmetry is located on the right side of 1, it indicates that the CCD of the region in 2015 shows a single 
increasing trend with the change of urbanization, because the urbanization cannot exceed 1. On the contrary, when the axis of symmetry is located on the left of 1, it 
indicates that there is a critical value for the positive influence of urbanization on the CCD. When the urbanization exceeds this critical value, the CCD will continue 
to decrease. 
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River Delta urban agglomerations (56.29%) and the Pearl River Delta 
urban agglomerations (56.26%). On the contrary, Beijing-Tianjin-Hebei 
Province urban agglomerations showed a large decrease in the CCD 
area, with an area of 71.59 (103 km2) in the future. It indicates that the 
momentum of growth in Beijing, Tianjin and Hebei Province was 
insufficient and that the urbanization development was stagnating or 
even declining. Among these four regions, the Yangtze River Delta urban 
agglomerations showed the largest increase in the CCD area reaching 
60.35 (103 km2), whilst Taiwan had the smallest area (14.109 * 103 

km2). The Yangtze River Delta urban agglomeration had the highest 
percentage of area increase in CCD in the past, with a rate of 94.79%, 
while the Pearl River Delta showed the smallest increase (81.225%), 
followed by Taiwan (86.364%). 

Therefore, we propose the following suggestions: (1) strategies per-
taining to Beijing-Tianjin-Hebei urban agglomerations and the Pearl 
River Delta urban agglomerations, where the EEQ is currently showing a 
downward trend, should focus on green economy development, the 
acceleration of technological transformation and innovation, and the 
formulation of sound environmental protection policies. (2) Strategies 
pertaining to the northern Jiangsu should be used to increase the tertiary 
industry’s proportion, introduce foreign investment, continuously 
improve infrastructure construction, and steadily increase urbanization 
level, while also focusing on ecological environment protection; (3) the 
urbanization development of Taiwan Province, affected by the 

international situation, has continued to decline in the past 24 years, and 
thus, Taiwan should accelerate economic transformation, increase in-
vestment preferences, actively introduce foreign capital, promote in-
dependent brand building, increase exports, improve infrastructure 
construction, and improve relations with mainland China. 

6. Conclusion 

China’s rapid urbanization process has produced serious ecological 
and environmental problems since the establishment of the socialist 
market economic system during 1992–2015. Simultaneously, “sustain-
able development” has become a global strategic development goal, so 
the country needs to properly and quickly achieve the China 2030 
Sustainable Development Goals. Therefore, the researchers of this study 
monitored the spatiotemporal changes of the EEQ, urbanization, and the 
CCD in the central and eastern regions of China during 1992–2015 and 
then quantitatively studied the coupling mechanism between the EEQ 
and urbanization using the CCD model based on multi-source remote 
sensing data. This study will counterbalance deficiencies of the existing 
research, fill gaps in the current research on the interaction mechanism 
between the EEQ and urbanization, and provide a new research 
perspective for understanding urban sustainable development in China 
and even the world. Key points from the conclusion are as follows: 

Fig. 11. The spatial distribution map of the CCD using the Hurst exponent.  
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(1) During 1992–2015, the urbanization and CCD values for the entire 
study area exhibited an increasing trend with the growth rates 
being 0.0017a− 1 and 0.0011a− 1, respectively, while the RSEI-2 
showed slight change, and its growth rate was 1.21 E− 10 a− 1. 
Spatially, urbanization and the CCD both presented a gradual 
decrease from east to west, while the RSEI-2 displayed a gradual 
decrease from south to north, exhibiting a “good in the south and 
bad in the north” spatial distributions. Additionally, the violent 
spatial variability for the three indexes all exhibited the spatial 
distribution patterns of weak in the west and strong in the east. For 
the CCD, its changes in the central and eastern regions of China had 
strong spatial agglomerations, especially in the three major 
China’s urban agglomerations. Additionally, the CCD had a strong 
spatial dependence, i.e., the cities with high (low) CCD values were 
more likely to cluster, exhibiting a spatial pattern of “low inside, 
high outside, high in the east, low in the west".  

(2) There was a negative linear relationship (i.e., a “unimodal” 
functional relationship) between the EEQ and urbanization. 
Additionally, urbanization development had a decisive influence 
on the CCD in the past 24 years due to the huge gap between the 
two indexes development levels. However, the continuous 
“rough” urbanization process could not have a sustained positive 
impact on the CCD level between urbanization and the EEQ, i.e., 
there was a critical value of positive impact. For example, the 
future CCD level between EEQ and urbanization would decline in 
three major urban agglomerations and Taiwan.  

(3) By dividing the CCD into three types (i.e., uncoordinated, 
moderate-coordinated, and coordinated), the coordinated city 
types were mainly distributed in MCs, SCs, and LCs, i.e., the 
higher the city’s level of economic development, the better the 
cities’ coordination, but the cities’ EEQ continued to deteriorate. 

(4) The RSEI-2 model proposed in this study is suitable for moni-
toring the EEQ at the national and regional scales. The RSEI-2 
model has the advantages of simplicity, convenience, and data 

accessibility, and thus, provides the second choice after EI index 
for monitoring China’s EEQ. 
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