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• A novel approach was developed to im-
prove OBB emission estimations by fusing
MODIS, VIIRS and Himawari-8 satellite
observations.

• The novel approach can capture large part
of fires missing by MODIS and promote
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creased the OBB emissions by about 5
times compared with previous estimates.
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delayed by 1–4 h due to the escape from
fire monitoring.
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Open biomass burning (OBB) is an important source of air pollutants and greenhouse gases, but its dynamic emission
estimation remains challenging. Existing OBB emission datasets normally provide daily estimates based upon Moder-
ate Resolution Imaging Spectroradiometer (MODIS) retrievals but tend to underestimate the emissions due to the
coarse spatial resolution and sparse observation frequency. In this study, we proposed a novel approach to improve
OBB emission estimations by fusing multiple active fires detected byMODIS, Visible Infrared Imaging Radiometer on-
board the SuomiNational Polar-orbiting Partnership (VIIRS S-NPP) andHimawari-8. The fusion ofmultiple activefires
can capture the missing small fires and the large fires take place during the non-overpass time of MODIS observations.
Also, regional-basedfire radiative power (FRP) cycle reconstructionmodels andOBB emission coefficients were devel-
oped to address the large spatial discrepancies of OBB emission estimations across China and to promote the estimate
to an hourly resolution. Using the new approach, hourly gridded OBB emissions in China were developed and can be
updatedwith a lag of 1-day, or even near-real-timewhen real-timemultiple activefires are available. OBB emissions in
China based on this approach were more than 3 times of those in previous datasets. Evaluations revealed that the spa-
tial distribution of the estimated PM2.5 emissions from this study was more consistent with the ambient PM2.5 concen-
trations during several episodes than existing datasets. The hourly OBB emissions provide new insight into its
spatiotemporal variations, enhance timely and reliable air quality modeling and forecast, and support the formulation
of accurate prevention and control policies of OBB.
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1. Introduction

Open biomass burning (OBB) is an important source of air pollutants
and greenhouse gases, posing a serious threat to air quality, climate change
and human health (Tian et al., 2009; Jacobson, 2014; Chen et al., 2017;
Akherati et al., 2020). It refers to the burning of crop residues, forest and
other biomass in fields. Its emission fluctuates violently in line with the
growing and harvest seasons in different regions. When its emissions peak
at harvest seasons, its contribution to air quality can overweight important
anthropogenic sources such as mobile sources and industry activities (Ding
et al., 2013; Huang et al., 2014; Zhou et al., 2019; Yu et al., 2019; Cheng
et al., 2021; Yadav et al., 2017; Bikkina et al., 2019; Paglione et al.,
2020). For instance, it can contribute up to 37% to PM2.5 concentrations
(Cheng et al., 2014), double the ozone formation potential of volatile or-
ganic compounds (VOCs) (Zhu et al., 2016) and contribute to 6.1% of the
global mean effective radiative forcing driven by total anthropogenic in
some regions of China during harvest seasons (Yao et al., 2017; IPCC, 2014).

Compared with other anthropogenic emission sources dominated by
regular human activities, OBB is not only affected by human activities but
is also largely affected by other less predictable factors like drought, light-
ning or other natural events (Xu et al., 2019; Wu et al., 2020). As a result,
the spatiotemporal variations of OBB emissions stand out more than other
anthropogenic emission sources. Conventionally, annual OBB emissions
are calculated based on statistical and survey data (Streets et al., 2003; Li
et al., 2016a; Li et al., 2016b; Azhar et al., 2019; Yang and Zhao, 2019;
Singh et al., 2020). However, such OBB estimates generally lag 1 to
5 years behind due to the availability of activity data. Given the strong tem-
poral variations of this source, such estimates are very likely outdated and
cannot capture the spatial and temporal characteristics in the present. Ad-
vances in satellite observations provide alternative ways to achieve more
up-to-date and dynamic OBB activity data. Several Moderate Resolution
Imaging Spectroradiometer (MODIS) based global OBB emission datasets,
such as Global Fire Emissions Database (GFED) (Van Der Werf et al.,
2017), Fire INventory fromNCAR (FINN) (Wiedinmyer et al., 2011), Global
Fire Assimilation System (GFAS) (Kaiser et al., 2012), and Fire Energetics
and Emissions Research (FEER) (Ichoku and Ellison, 2014), are available
in daily basis. Nevertheless, they are still subject to some limitations.
First, the spatial resolution of MODIS observations is not high enough
(1 km for active fires and 500 m for burned area) and only limited detec-
tions (at 1:30, 10:30, 13:30 and 22:30 local time) are made per day. It re-
sults in 2 to 15 times underestimation of OBB emissions at a regional
scale (Mao et al., 2014; Yang and Zhao, 2019; Pan et al., 2020). Second,
the low frequency of MODIS overpass cannot be used to develop the hourly
OBB emissions, contradictory to the fact that OBB has a strong temporal
profile at hourly basis (Mota and Wooster, 2018; Li et al., 2019). Third,
most global OBB emissions did not consider the regional discrepancies in
developing or using the emission factors, which are varied by vegetation
types and environmental conditions at regional scale (Schreier et al.,
2015; Van Der Werf et al., 2017; Zhou et al., 2017).

To overcome the issues of underestimation and low temporal resolu-
tion, attempts have been made to combine MODIS monitoring and geosta-
tionary satellite observations for higher monitoring frequency. However,
current studies mainly focused on large fires that occurred in the United
States or Africa (Roberts et al., 2011; Li et al., 2019). For regions where
most OBB generally contributes by open crop residue burning (OCB),
these methods are not applicable since the size of active fires is too small
to be detected by MODIS or geostationary satellites. Active fires, especially
occurring at the non-overpass time ofMODIS, are usually overlooked due to
the coarse spatial resolution of geostationary satellites. The challenge to
capture small activefires has not been addressed properly, hindering the ac-
curate estimation of OBB emissions.

In this study, we posed a novel approach to dynamically estimate hourly
OBB emissions by fusing multiple active fires from polar-orbiting and geo-
stationary satellite observations. Besides MODIS observations (polar-
orbiting), Visible Infrared Imaging Radiometer onboard the SuomiNational
Polar-orbiting Partnership (VIIRS S-NPP, polar-orbiting, 375 m, 2 times/
2

day, hereinafter referred to as VIIRS) detections and Himawari-8 monitor-
ing (geostationary satellite, 2 km, observed every 10min) are applied to im-
prove the spatial coverage and temporal resolution in the OBB emission
estimation. Also, regional fire radiative energy (FRE) based OBB emission
coefficients are developed to reflect the regional discrepancies in the emis-
sion characteristics. This approach is used to develop a near-real-time
hourly OBB emission inventory with only a 1-day lag and spatial resolution
of 2 km in China. The emission products can help improve air quality
modeling and forecast for pollution episodes in a timelier manner.

2. Data and methods

2.1. Methodological framework for the near-real-time estimation of OBB
emissions

In this study, we proposed a novel approach by fusing multiple active
fires from both polar-orbiting and geostationary satellites, and applied re-
gional FRE-based emission coefficients to near-real-time estimate hourly
OBB emissions (Fig. 1). In addition to the commonly used MODIS observa-
tions, VIIRS was applied to capture small fires that might be missed by
MODIS (Li et al., 2018) and the Himawari-8 was applied to improve the
temporal resolution of OBB emission estimates by constructing the hourly
fire radiative power (FRP) variations of each gridded fire event (Bessho
et al., 2016). To account for the large OBB emission discrepancies across
the vast mainland caused by uneven climate conditions and vegetation
types (Xu et al., 2019), OBB emissions in different regions and biomass
types were estimated using different fusion parameters (FRP calibration
factor, the burning duration (BD), FRP distributions, etc.) and FRE-based
OBB emission coefficients. The approach consists of three major steps, in-
cluding the collection and preprocessing of multiple active fires, spatial
and temporal fusions, and regional FRE-based OBB emission estimation,
which are presented in the following sections.

2.2. Data collection and preprocessing

Active fire products of MODIS and VIIRS used in this study were
downloaded from the Fire Information for Resource Management System
(FIRMS), NASA (https://firms.modaps.eosdis.nasa.gov/). Himawari-8 ac-
tive fires were obtained from the P-Tree System, Japan Aerospace Explora-
tion Agency (JAXA) (https://www.eorc.jaxa.jp/ptree/). These multiple
active fires were preprocessed according to the following pretreatment pro-
cedures for accurate and easy fusion. First, active fires with low confidence
(“<30%” for MODIS detections, “L” for VIIRS observations and “=1” for
Himawari-8 monitoring) were deleted due to their large uncertainties on
OBB detections (Randerson et al., 2012). Second, to account for thewide re-
gional discrepancies of OBB emission estimations in China, the study area
was divided into 7 OCB regions (Fig. 2a) according to the crop types
(Mehmood et al., 2018; Qiu et al., 2016) and 4 forest regions (Fig. 2b) ac-
cording to the spatial distribution of forest types. Thus, these active fires
were assigned to 7 OCB regions and 4 forest regions based on land-use
data and their locations. Third, active fires from MODIS, VIIRS and
Himawari-8 in different regions were re-gridded and mapped to the same
raster dataset with 2 km×2kmhorizontal resolutions and 1-hour intervals
to facilitate temporal and spatial fusions (denoted as gridded active fires
(GAF) and their FRP were denoted as FRPM, FRPV and FRPH). We preferred
to upscale multiple active fires to larger grid, rather than downscaling to
finer grids. Because the precise location and FRP of finer pixels in MODIS
or Himawari-8 observations are unknown, converting coarse active fires
from MODIS or Himawari-8 observations to fine fires to match VIIRS will
introduce significant uncertainty.

2.3. The fusion of multiple active fires

This section briefly introduces the methods for spatial and temporal fu-
sions of multiple active fires, respectively. The details are available in
Sections 2.3.1 and 2.3.2.

https://firms.modaps.eosdis.nasa.gov/
https://www.eorc.jaxa.jp/ptree/


Fig. 1. The methodological framework for estimating the near-real-time OBB emissions.
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2.3.1. Spatial fusion
The spatial fusion of active fires includes the FRP calibration and multi-

ple FRP combination. First, the biased FRPM and FRPH caused by the coarse
spatial resolution were calibrated based on the gridded FRPV at different re-
gions and biomass types. Due to its higher spatial resolution, VIIRS can de-
tect small fires and thus typically observe more accurate and higher FRP
values (Schroeder et al., 2014; Li et al., 2018). For instance, the cumulative
contemporaneous FRPM and FRPH in China from July 2015 to June 2020
were 20% and 39% lower than the FRPV, respectively. To get a better cali-
bration, two methods were used to calibrate the FRPM and FRPH by region
individually. 1)When contemporaneous FRPV,t and FRPM,t (or FRPH,t) at the
same grid were available, the entire FRPH from the same fire event and the
FRPM were calibrated using Eqs. (1) and (2), respectively. To retain the
shape of FRPH distribution, the same adjustment factor FRPV ,t−FRPH,t

FRPH,t
derived

from the hourly value was extended to the entire FRPH. 2) To calibrate
the remaining FRPM or FRPH, 11 averaged adjustment factors from different
regions (7 OCB regions and 4 forest regions) were used. The calibration co-
efficients (α) of FRPM and FRPHwere developed based on the identification
of contemporaneous FRPV, t and FRPM, t (or FRPV, t and FRPH, t) among 4.37
Fig. 2. Region divisions for OCB (a) and

3

million OCB fires and 2.14 million forest fires from multiple satellite re-
trievals from July 2015 to June 2020. Ratios of the cumulative FRPV, t to
FRPM, t and the cumulative FRPV, t to FRPV, t in different regions (see in
Fig. S1) were used as α to calibrate FRPM and FRPH based on Eqs. (3) and
(4). Second, the FRPV and calibrated FRPM and FRPH were fused according
to Eq. (5) to get a full dataset of FRP (FRPf) and eliminate the repetitive FRP
at the same grid and hour.

FRPsM ¼ FRPM � FRPV ,t − FRPM,t

FRPM,t
(1)

FRPsH ¼ FRPH � FRPV ,t − FRPH,t

FRPH,t
(2)

FRPsM ¼ α� FRPM (3)

FRPsH ¼ α� FRPH (4)
forest fires (b) in mainland China.



Table 1
Regional FRE-based OBB emission coefficients (unit: g/MJ).

CO NOx SO2 NH3 VOCs PM25 PM10 BC OC

OCB Region 1 34.80 2.15 0.35 0.47 5.22 6.53 7.26 0.18 1.94
Region 2 36.30 2.27 0.46 0.35 5.13 6.33 6.46 0.19 2.35
Region 3 42.69 2.42 0.49 0.47 4.96 6.82 7.64 0.24 2.67
Region 4 39.52 1.85 0.27 0.60 3.75 5.91 7.84 0.22 1.87
Region 5 44.32 1.83 0.14 0.84 3.94 6.63 9.73 0.23 1.55
Region 6 30.42 1.93 0.34 0.37 4.67 5.72 6.14 0.15 1.79
Region 7 31.07 1.91 0.38 0.31 4.28 5.35 5.56 0.16 1.98

Forest fires Region 1 37.72 1.06 0.18 0.31 9.84 4.18 5.25 0.21 1.92
Region 2 41.82 0.54 0.41 0.62 5.74 5.05 5.25 0.24 3.77
Region 3 41.82 0.54 0.41 0.62 4.51 5.05 5.25 0.24 3.77
Region 4 48.38 1.23 0.41 1.44 11.48 5.20 5.37 0.08 3.20
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FRPf ¼
FRPV for FRPV > 0
FRPsM for FRPV ¼ 0;FRPM > 0
FRPsH for FRPV ¼ 0;FRPM ¼ 0;FRPH > 0

8<
:

ð5Þ

where, FRPsM and FRPsH are the calibrated FRPM, and FRPH; α is the ratios of
cumulative FRPV, t/FRPM, t and FRPV, t/FRPH, t.

2.3.2. Temporal fusion
The temporal fusion of multiple active fires includes the reconstruction

of hourly FRP variations (denoted as FRP cycles) and the fusion of adjacent
fires. The key of FRP cycle reconstruction was to estimate the BD and the
FRP distribution using the prior information acquired from Himawari-8
continuous detections, which reveals that BD and distribution shapes are
closely related to the peak FRP value of fire events. Therefore, a set of
FRP cycle reconstruction models, including 11 regression models for esti-
mating BD as a function of the peak FRP value and 86 FRP distributions
as a function of BD in different regions were fitted using full FRP cycles ob-
tained by Himawari-8.

To estimate BD for fire events, we identified all the single fire events ac-
cording to the continuous observations of active fires from Himawari-8
from July 2015 to June 2020. These fire events were first assigned to 11 re-
gions (7 OCB regions and 4 forest regions). The hourly FRP cycles of fire
events with the same BD were averaged for different regions. Then, the re-
gression models between BD and the peak FRP were developed for each re-
gion. Although most of the BD of fire events observed by Himawari-8 was
larger than 4 h, those small fire events with the BD of less than 4 h can be
predicted by the regressionmodel. In this study, we set 2 h as the minimum
BD of a fire event following the minimum BD of ~2 h observed by Vermote
et al. (2009). BD for each region was calculated according to Eq. (6).

BD ¼
BDmin for FRP < FRPmin

a� FRPþ b for FRPmin≤FRP≤FRPmax

BDmax for FRP > FRPmax

8<
: ð6Þ

where, BDmin and BDmax represent the minimum and maximum values of
the BD in a certain region, and BDmin is limited to 2 h for all regions. a
and b are parameters for the liner relationship between BDand FRP. Param-
eters for the BD calculation were shown in Table S1.

Besides the BD, FRP distribution during a fire event were fitted accord-
ing to the continuous detections of Himawari-8 FRP. For each region, fire
events in different BD were clustered and their FRP cycles were averaged.
A total of 86 distribution models (8 models for each region, excepted for
OCB Region 4 and region5 with 7 models) were built based onWeibull dis-
tribution to portray these averaged hourly FRP cycles for fire events in dif-
ferent regions. The fitting FRP can be calculated based on Eq. (7).

FRP tð Þ ¼ e tm=λð Þk � tm 1−kð Þ � FRPpeak � t k−1ð Þ � e− t=λð Þk (7)

where, tm and FRPpeak denote the time from the beginning and maximum
FRP during a fire event. λ and k are scale and shape parameters for Weibull
distribution and are presented in Table S2.

For fire events with BD larger than 4 h, FRP cycles were described by
Weibull distribution fitted according to the continuous detections of
Himawari-8 FRP. However, for thosewith BD less than 4 h, their FRP cycles
were hardly fitted due to the lack of continuous monitoring. According to
previous studies, the FRP cycles of most smallfire eventswere Gaussian dis-
tributions (Vermote et al., 2009; Yang and Zhao, 2019; Liu et al., 2015).
Therefore, in this study, we used Gaussian distributions to portray the
FRP cycle (see Eq. (8)) for fire events with BD less than 4 h.

FRP tð Þ ¼ FRPpeak ∗ e−
t−μð Þ2
2∗σ2

� �
(8)

where, μ and σ are parameters in Gaussian distributions. σ is assumed as a
quarter of the BD, and μ is the middle time of the burning duration.
4

Because large fires can burn continuously for hours or even for a day,
the adjacent active fires observed by multiple satellites may belong to the
same fire event. In this study, to better characterize the hourly FRP varia-
tion, we fused the hourly FRP cycles of temporally adjacent active fires ac-
cording to the difference between FFPR (predicted FRP of the former
distribution at the X-value where the peak FRP of the latter distribution is
located) and PFRP (the peak FRP of the latter distribution). Based on the ob-
served FRP cycles of those long-burning events, we used the difference of
60% as the criterion to determine whether the adjacent active fires are
from the same burning event. 1) If the difference between FFRP and PFRP
iswithin±60%, these activefires are considered to be part of the same con-
tinuous burning process and then integrated to form a longer continuous
FRP cycle to avoid the repeated integration of FRP from the same burning
process (Fig. S2a). 2) If the difference between FFRP and PFRP is greater
than 60%, these active fires are regarded as separate fire events and thus
their FRP cycles were developed separately (Fig. S2b & c). Finally, the
fused FRP was hourly integrated to gain hourly FRE according to Eq. (9).

FREhh ¼
Z hhþ1

hh
FRP tð Þdt (9)

where, hh means daily hour time from 0 to 23.

2.4. Development of regional FRE-based emission coefficients

FRE-based emission coefficients for OCB and forest fires were estab-
lished individually to better reflect the considerable variations inOBB emis-
sion characteristics in different regions. Due to crop rotation, satellite data
cannot adequately identify plant types for OCB, hence FRE-based OCB
emission coefficients in different regions were developed based on histori-
cal emissions and the fused FRE from 2016 to 2019. To generate regional
FRE-based OCB emission coefficients, 63 regression models for historical
emissions and the fused FRE were built as follows. First, historical daily
emissions from 2016 to 2019 in 7 OCB regions of China were developed
using a combination of statistical data of crop products and the MODIS ob-
servations and active fire counts were applied to calibrate the in-field burn-
ing proportion (Xu et al., 2019). Second, regressionmodels were developed
to describe relationships between daily OCB emissions and fused FRE for 9
types of pollutants in each of the 7 OCB regions. Third, the slopes of the re-
gression line between emissions and fused FRE were identified as the FRE-
based OCB emission coefficients, as presented in Table 1.

Because forest vegetation types are relatively stable and can be accu-
rately identified based on geographic information, regional FRE-based
emission coefficients in different forest regions were developed by
combining local dry matter-based emission factors and the biomass
combustion coefficient (0.41 kg/MJ) (Xu et al., 2019; Vermote et al.,
2009). FRE-based forest fire emission coefficients were also listed in
Table 1.

Finally. The OBB emissions in China were calculated based on Eq. (10).

Ei, ¼ ∑g,hh,j FREg,hh,j � ECi,j
� �

(10)



Fig. 3. Regression models between BD and peak FRP in the 7 OCB regions (a) and 4 forest regions (b). Comparisons of BD estimated in this study and observed by
Himawari-8 (c).
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where, g, i and j are the 2 km grid, pollutant and region. Ei means the OBB
emissions for the i-th pollutant in China. FREg, hh, j is the hh-th hourly FRE in
the g-th grid and j-th region. ECi, j stands for the emission coefficients for the
i-th pollutant in j-th region among the 7 OCB regions and 4 forest regions,
which is presented in Table 1.

3. Results and discussion

3.1. Regional-based FRP cycle reconstruction models and OBB emission
coefficients

An adequate prediction of BD is the key to reconstructing the FRP cycle
of a fire event. In this study, we applied methods presented in Section 2.3.2
to build the models of the BD for 7 OCB regions and 4 forest regions. As re-
vealed by 11 regression models in Fig. 3a & b, the linear relationship be-
tween the BD and peak FRP is evident across different regions, with the
correlation coefficients (R) ranging from 0.71 to 0.99. This linear relation-
ship is especially prominent when the peak FRP is approximately <30 MW
in most models. Alternatively, when the peak FRP increases, the observed
BD is more likely to deviate from the regression model. One reason is that
larger fire events are more likely to involve several combustion stages. As
revealed by themodel parameters (see Table S1), the slops of the regression
models (a) range from 0.19 to 1.10. Among these models, the positive rela-
tionship between BD and peak FRP is consistent for forest fires, ranging
from 0.20 to 0.23. Stable vegetation types and similar combustion
Fig. 4. Fitting models for the portraying of FRP distributions i
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environment of forest fires are the main reasons for the moderate a in the
4 forest regions. In comparison, the linear relationships in OCB regions var-
ied largely, possibly due to the regional discrepancies in crop types, plant-
ing habits and natural conditions. The maximum BD was identified as
12 h for most regions, except for OCB Region 4 and 5, which have a
BDmax of 11 h. The regional differences among the above linear relation-
ships reveal the need to develop regional-based models to capture the
OBB emissions more reliably.

To validate the above regression models, the BD of fire events derived
from Himawari-8 continuous observations from July 2020 to June 2021
were compared with the predicted BD (see Fig. 3c). It shows that the major-
ity of BD of fire events can be well predicted by the regression models, with
the correlation coefficients (R) of 0.62 and 0.73 for OCB and forest fires, re-
spectively. Most of the paired BD (83%) were within the ratio of 0.7 to 1.4.
The estimated-to-observed ratio of outliers ismainly less than 0.7, indicating
that thesefire eventsmay be composed of several small fire events. For these
fire events, we estimated BD for each small fire event and then fused them.

Another key to reconstructing the FRP cycle is to estimate the hourly
FRP distribution of a fire event. According to the observations, the hourly
FRP of fire events for all regions and combustion types increases sharply
when an OBB event occurs and gradually decreases when it decays, show-
ing a positive-skewed distribution. Weibull distribution is a good fit to de-
scribe the distribution characteristics. In this study, we developed 86 of
Weibull distributions covering different BD in different regions, as shown
in Fig. 4. All the parameters of 86 distributions were detailed in Table S2.
n OCB Region 1 to 7 (a-g), and Forest Region 1 to 4 (h-k).



Fig. 5. Regression models between historical daily OCB emissions and fused FRE in
different OCB regions.
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As shown in these figures, the FRP distribution with the same BD showed
large discrepancies across different regions, which are relevant to burn
types and environmental conditions. Under the same BD, forest fires typi-
cally had a higher FRP than OCB since the burning size of forest fires is gen-
erally larger than OCB. This highlights the importance of developing
regional FRP cycle reconstructionmodels.Moreover, when BD is 9 h or lon-
ger in parts of the regions (e.g., OCB Region 4 with BD=11, OCB Region 6
with BD= 11 and OCB Region 7 with BD= 9, 10 and 11), the fitted FRP
distribution tends to deviate from the observed values. These burnings with
a long time and low FRP are probably composed of two or more small fire
events, illustrating the necessity of temporal fusing for adjacent active fires.

Apart from the FRP cycle reconstruction models, the OCB emission co-
efficients also vary by region (Fig. 5). These emission coefficients were de-
veloped according to the correlation between historical daily emissions and
fused FRE. The correlation, with the R ranging from 0.65 to 0.98, is highly
linear positive across different regions in China, indicating that the OCB
emissions were well estimated using region-based coefficients. The main
causes for the discrepancies in emission coefficients lie in the differences
in drymatter-based emission factors of different crop residues and cropping
structures in different regions. For instance, the rice-dominated Region 5
tends to have the highest CO emission coefficients since the large dry
matter-based emission factors of rice straw (64.2, 48.6 and 46.1 g/kg for
Fig. 6. The spatial coverage of active fires observed by MODIS and its increasing cap
distributions of MODIS and fused active fires from 2016 to 2020 (b). Hourly FRP varia
Sichuan Xichang forest fire from 30 March to 2 April 2020 (c).
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rice, wheat and corn straw) (Xu et al., 2019). These regional-based coeffi-
cients are comparable to the vast majority of those obtained through labo-
ratory measurement or top-down constraining (Table S3).

3.2. Spatiotemporal improvements of fused active fires

In this section, we demonstrated how the spatial and temporal fusions
improve the OBB estimation by filling in missing active fires and refining
the temporal resolution. Fig. 6a & b shows the change in the spatial cover-
age of active fires as a result of the spatial fusion of MODIS, VIIRS and
Himawari-8 from 2016 to 2020. In comparison to MODIS, VIIRS detected
1.49× 105 extra GAF averaged per year, which is 5.9 times of the number
of GAF detected by MODIS. Approximately 80% of these extra active fires
were OCB and most of them were small fires. They were concentrated in
Northeast China, where 21% of China's national grain production comes
from (Yang et al., 2020). These extra small fires from VIIRS also result in
an increase of 156% in the cumulative FRP. Besides the overlook of small
fires, MODIS cannot capture a large portion of fires that occurred during
its non-overpass time. This gap is partly filled by the Himawari-8, which
can capture the fires by continuous monitoring. A large part of these addi-
tional fires are also captured in Northeast China with abundant crop resi-
dues and south China where forest fires take place. As a result, the spatial
coverage of active fires has been improved by 2.96 times according to the
Himawari-8 observations. By combining VIIRS and Himawari-8 with
MODIS, the spatial coverage of active fires increased by 3.44 times. This
means that previous OBB estimates based on single polar-orbiting satellite
data, such as MODIS, might be significantly underestimated. The absence
of activefires occurring during non-overpass time is the key cause of the un-
derestimation, followed by the small fires.

We used the Sichuan Xichang forest fire as an example to illustrate how
fusion improves temporal resolution. As shown in Fig. 6c,MODIS and VIIRS
only provide 7 and 5 intermittent FRP observations, respectively, during
the 69-h of forest fires (15:00 on 30 March ~12:00 on 2 April 2020). On
the contrary, Himawari-8 provides more continuous FRP observations
though there were still 20 h without FRP values due to the small size of
these fires or the disturbance of the cloud (Wickramasinghe et al., 2018).
In this study, these missing FRP values in the gap of Himawari-8 were inter-
polated using FRP distributions developed in Section 2.3.2 to form contin-
uous hourly FRP. These estimated FRP values were then calibrated using
the VIIRS observations to correct possible underestimations caused by the
coarse resolution of Himawari-8. To assess the fused FRP, we compared
the fused FRP-based and area-based biomass consumptions in four forest
fire events (Fig. S3). The fused FRP-based biomass consumptions are
tured by VIIRS, Himawari-8 and fused active fires from 2016 to 2020 (a). Spatial
tions from fused active fires, MODIS, VIIRS and Himawari-8 detections during the



Fig. 7. Comparisons of annual mean CO emissions in this study and other MODIS-based OBB emission datasets (GFEDv4.1s, GFASv1.2, FINNv1.5 and FEERv1.0) from 2016
to 2020 (a). Hourly CO emissions estimated in this study, GFEDv4.1s and FINNv1.5 in Northeast China during an OCB event from April 10 to April 16, 2020 (b).
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consistent with those estimates based on the burned area with slight under-
estimation, illustrating that the fused FRP could accurately capture the fire
intensity.

3.3. Comparisons and evaluations

Based on the regional-based FRP cycle reconstruction models and emis-
sion coefficients, we created a dataset of hourly OBB emissions in China
from 2016 to the present, with a spatial resolution of 2 km. So far, the
dataset has been continuously updated on a daily basis. The fusion of mul-
tiple active fires increases the OBB emissions and partly resolves the under-
estimation of OBB emissions in previous datasets (Van Der Werf et al.,
2017; Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku and Ellison,
2014). To illustrate the emission change, annual CO emissions of OBB in
China from 2016 to 2020 estimated in this study and other datasets, includ-
ing GFEDv4.1s (Van Der Werf et al., 2017), FINNv1.5 (Wiedinmyer et al.,
2011), GFASv1.2 (Kaiser et al., 2012) and FEERv1.0 (Ichoku and Ellison,
2014), were compared in Fig. 7a. Overall, mean annual CO emissions esti-
mated in this study were 6.3, 5.9 and 3.3 times of those in the GFEDv4.1s,
GFASv1.2 and FINNv1.5 datasets, respectively. Since these three global
datasets only used MODIS retrievals, a large portion of active fires was ex-
cluded from the OBB emission estimation. The FEERv1.0 dataset was also
developed using the MODIS FRP, but its estimates are about 2 times of
our estimates. This is because the top-down FEERv1.0 emission coefficients
developed by aerosol optical thickness were greatly overestimated in China
(Ichoku and Ellison, 2014; Hammer et al., 2020). Another comparison also
revealed that the FEERv1.0 emission coefficients in China were roughly 10
times larger than the regional FRE-based emission coefficients developed in
this study (Table S3). Excluding the influence of the emission coefficients,
the activity data adopted in this study was still about 5 times of that in
the FEERv1.0.

In addition to the emission amount, the temporal and spatial character-
istics of OBB emissions also improved. For demonstration, hourly CO emis-
sions during an OCB event (from 10 April to 16 April 2020) in Northeast
China were presented and compared to those estimates from GFEDv4.1s
(3-h) and FINNv1.5 (daily) (Fig. 7b) (Van Der Werf et al., 2017;
Wiedinmyer et al., 2011). The hourly OCB emissions estimated in this
study have a higher temporal resolution. It revealed the large hourly varia-
tions in OCB emissions, which can be as high as two orders of magnitude.
The diurnal patterns of OCB emissions, on the other hand, varied little
from day to day with frequent peaks in the afternoon (around 17:00). In
comparison, neither the GFEDv4.1s nor the FINNv1.5 captures the hourly
variations. Although the GFEDv4.1s provides a diurnal cycle according to
historical GOES observations during 2007–2009 in thewestern hemisphere
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(Van Der Werf et al., 2017), the diurnal cycle was assumed to be periodical
in all days, resulting in the underestimation of some emission peaks.

By filling a large part of missing fires, OBB emissions estimated in this
studyweremore spatially consistentwith observations than those estimates
solely using MODIS. For instance, the PM2.5 emissions estimated in this
study (fused-based emissions) were more widely distributed and consistent
with the ambient PM2.5 concentrations derived from satellite observations
(Wei et al., 2020; Wei et al., 2021) than those estimated solely based on
MODIS retrievals (MODIS-based emissions) (Fig. 8). The correlation
(R) between the fused-based emissions and observed PM2.5 concentrations
increased from 0.31 to 0.62, compared to MODIS-based emissions. Also, a
similar improvement in spatial consistency between emissions and ob-
served PM2.5 concentrations was observed during another OBB emission
episode in October 2017 (Fig. S4).

In this study, we also used uncertainty analysis to assess the OBB emis-
sion estimates retrieved from multiple active fires. Sources of uncertainties
in OBB emission estimates include FRP observations, BD and FRP distribu-
tion models, and emission coefficients. According to Freeborn et al. (2014),
the coefficient of variation (CV) of MODIS FRP for an individual fire pixel
was 53%, and it decreased to ~5% after upscaling. Because active fires
with low confidence were removed during the preprocessing, the CV of ob-
served FRP was assumed to be 5%. Based on the comparison of the esti-
mated BD and FRP with observations, uncertainties of estimated BD and
FRP were quantified as ±40% and ± 10%, respectively. Following previ-
ous studies, the CV of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC
emission coefficients were quantified as 58%, 55%, 79%, 67%, 97%,
65%, 50%, 66% and 70%, respectively (Andreae, 2019). Then, we used
theMonte Carlo simulation to propagate uncertainties in BD, FRP and emis-
sion coefficients to emission estimates. Results show that uncertainties of
OBB emissions in China were −64% to 94%, −63% to 93%, −78% to
114%, −70% to 106%, −93% to 137%, −68% to 101%, −59% to 87%,
−68% to 103% and −71% to 104% for CO, NOx, SO2, NH3, VOCs,
PM2.5, PM10, BC and OC emissions in 2020 (95% confidence intervals).
Compared with OBB emissions from previous studies (Yang and Zhao,
2019; Li et al., 2016b) based on MODIS observations (uncertainties ranges
from −83% ~ −52% to 126% ~ 303%), uncertainties in this study de-
creased, indicating that the fusion of multiple active fires can reduce uncer-
tainties in OBB emissions.

3.4. Variations of OBB emissions in China

Based on the dataset of hourly OBB emissions developed in this study,
the spatiotemporal variations of OBB emissions in China from 2016 to
2020 were analyzed. In this section, we used CO emissions as an example



Fig. 8. Spatial distributions of MODIS-based PM2.5 emissions (a), fused-based OBB PM2.5 emissions (b) and MODIS-observed PM2.5 concentrations (c) (Wei et al., 2020; Wei
et al., 2021) in April 2020 in Northeast China.
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to examine the spatiotemporal variation. In terms of the annual emission
trend, OBB emissions in China have decreased in recent years, falling
from 1.81× 107 tons in 2016 to 1.52×107 tons in 2020, owing to the pro-
hibition on crop residue burning and the prevention of forest fires (Fig. 9a
& b). However, OCB emissions in Northeast China (OCB Region 1) contin-
ued to rise 28%withfluctuations, indicating that there is still large room for
reduction. As shown in Fig. 10, Northeast China is the hot spot of OBB emis-
sions in China, which contributed 24% and 44% of the total OBB and OCB
Fig. 9. Annual CO emissions from OCB (a) and forest fires (b), monthly patterns of OCB
forest fire emissions (f) in different regions.
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emissions in 2020, respectively. Possible explanations for the high OCB
emission in Northeast China were its high grain production and the incom-
plete coverage of the supervise period (details see in the exploration of peak
hour changes).

At daily and hourly scales, the dataset reveals a large temporal variation
in OBB emissions, especially at the hourly scale. In China, 95% of the daily
national OBB emissions varied between 23% and 434% of the daily aver-
age, and 95% of the hourly national OBB emissions varied between 10%
emissions (c) and forest fire emissions (d), hourly patterns of OCB emissions (e) and



Fig. 10. Spatial distributions of CO emissions from OBB in 2016 (a) and 2020 (b) in China.
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and 632% of the hourly average. Moreover, these temporal variations in
OBB emissions vary dramatically across regions. Fig. 9c& d reveal a signif-
icant discrepancy inmonthly patterns in various regions, especially for OCB
emissions. The main reason for regional differences in monthly patterns is
crop planting habits. In OCB Region 1, for example, crops are primarily
planted in March and April and harvested in October, resulting in 47%
and 28% of OCB emissions concentrated in March to April and October to
November, respectively. In addition, we presented the average hourly
changes of OBB emissions for different regions in China (Fig. 9e& f). Over-
all, both hourly OCB and forest fire emissions vary significantly throughout
the day, with peaks in the afternoon and troughs around 08:00, similar to
the diurnal FRP across the conterminous United States (Li et al., 2019). Be-
cause of the geographical difference in vegetation types, natural conditions,
human activities and control policies, hourly variations of OBB emissions
also differed remarkably by region. These differences in temporal varia-
tions and diurnal variations highlight the importance of estimating hourly
OBB emissions by region.

Based on the temporal resolution of the dataset, we also find a gradual
change in hourly variations and emissions peaks. The four regions with
the largest OCB emissions (OCB Region 1, 3, 5 and 6) were selected to
Fig. 11. Hourly patterns of OCB emissions from 2016 to 2020 in typical region
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demonstrate the annual change of peak hours of OCB emissions. As
shown in Fig. 11, the peak hour of OCB emissions in these regions had
been pushed backward by 1–4 h in recent years. Hourly emissions from
10:00 to 15:00 had decreased, particularly at 13:00 and 14:00, with an av-
erage reduction of about 17%, while hourly emissions from 18:00 to 21:00
increased by 28%. The backward shift of the emission peak ismore obvious
in OCB Region 1, where OCB emissions at 13:00 decreased by about 20%
while OCB emissions at 17:00 increased by about 42%. The strict control
measures of OBB may be the main cause of the backward shift. Since
1999, China has implemented several control measures to regulate OBB
emissions, which were gradually tightened in 2008, 2013 and 2015. Spe-
cific control measures include strengthening the supervision of open burn-
ing, increasing crop straw utilization, and so on. Fire observations from
MODIS were widely used to monitor biomass burning and to evaluate the
control measures. However, it may not be completely effective because
MODIS only passes over four times per day. Moreover, some regions (espe-
cially in OCB Region 1) can postpone biomass burning events by several
hours to escape the monitoring, resulting in shifts of OBB emission peaks,
from 13:00 to 17:00. The approach established in this study can provide
hourly OBB emissions and support for 24-hour supervision.
s (a. OCB Region 1; b. OCB Region 3; c. OCB Region 5; d. OCB Region 6).
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4. Conclusions and implications

In this study, we proposed a novel approach for estimating hourly OBB
emissions. The approach addressed the underestimation issue and low tem-
poral resolution of previous OBB estimates by fusing multiple active fires
from polar-orbiting and geostationary satellite observations. In comparison
to previous OBB estimates solely based on MODIS observations (Van Der
Werf et al., 2017; Wiedinmyer et al., 2011; Kaiser et al., 2012; Ichoku and
Ellison, 2014), the novel approach can capture some small fires that
MODIS may have missed, as well as some relatively large fires that occur
outside the overpass time of MODIS, and thus can provide a more accurate
description of the spatial characterization and coverage of OBB emissions
with only a 1-day lag. In the case study of China, these small fires and active
fires during non-overpass time contributed 25%and 53%of the total spatial
coverage of fused activefires, respectively. As a result, 95%of national OBB
emissions were concentrated in 14% of the Chinese territory, higher than
the 5% captured only by MODIS retrievals.

Furthermore, the novel approach can promote the temporal resolution
of OBB emission estimations from1 day to 1 h, which is significantly higher
than most previous daily OBB emission estimates, as well as the timeliness.
Relying on a set of regional-based FRP cycle reconstruction models derived
from Himawari-8 observations, it is also possible to provide near-real-time
OBB emissions when the multiple active fires come in timely. These ad-
vancements enable us to capture the temporal variability, dynamic changes
and latest status of OBB emissions, which could help to identify new regu-
latory actions for timely and precise control of OBB emissions. For instance,
we found a very significant temporal variation in OBB emissions and the
backward shift of hourly peaks of OCB emissions in several regions in
China.

Aside from emission estimates, the novel approach can be used to im-
prove air quality modeling and forecasting. Previous studies reported that
biomass burning is an important source of ambient PM2.5, accounting for
about 10% of PM2.5 formations in China on average (Zhu et al., 2018).
However, most model-ready OBB emissions with a temporal resolution of
1 h were developed based on prescribed temporal profiles and the annual
estimate. As a result, the temporal variations of OBB emissions in the
model were largely underestimated, which in turn led to a large bias in sim-
ulating pollution formation associated with OBB emissions. By using the
novel approach, the right temporal and spatial variations of OBB emissions
can be input into the model and forecasting system. Moreover, by identify-
ing and quantifying the OBB spatiotemporal variations and their driving
forces based on the historical hourly emissions, it is promising to predict
short-time OBB emissions to further improve forecasting.

Although the novel approach improves OBB estimates, it has several
limitations. First, small fires that occurred at the non-overpass time of
VIIRS or MODIS are still ignored. Due to the coarse spatial resolution,
these small fires cannot be detected by Himawari-8 monitoring. This
means that the OBB emissions developed in this study are still partly
underestimated. To further address the underestimation of small fires,
more satellite retrievals, such as VIIRS on board the National Oceanic and
Atmospheric Administration-20 (NOAA-20), the Advanced Geosynchro-
nous Radiation Imager (AGRI) onboard the Feng Yun-4A (FY4A), should
be fused. Second, rather than field study, the regional OBB emission coeffi-
cients employed in this study are generated using data investigation and re-
gression models. Although these emission coefficients are comparable with
most of the existing studies, large uncertainties still exist in the OBB emis-
sion characterization. To better quantify OBB emissions, localized OBB
emission coefficients for different regions should be carried out in line
with the extensive field study.
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