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Abstract: Surface ozone (O3) is an important atmospheric trace gas, posing an enormous threat to
ecological security and human health. Currently, the core objective of air pollution control in China
is to realize the joint treatment of fine particulate matter (PM2.5) and O3. However, high-accuracy
near-surface O3 maps remain lacking. Therefore, we established a new model to determine the
full-coverage hourly O3 concentration with the WRF-Chem and random forest (RF) models combined
with anthropogenic emission data and meteorological datasets. Based on this method, choosing
the Beijing-Tianjin-Hebei (BTH) region in 2018 as an example, full-coverage hourly O3 maps were
generated at a horizontal resolution of 9 km. The performance evaluation results indicated that the
new model is reliable with a sample (station)-based 10-fold cross-validation (10-CV) R2 value of 0.94
(0.90) and root mean square error (RMSE) of 14.58 (19.18) µg m−3. In addition, the estimated O3

concentration is accurately determined at varying temporal scales with sample-based 10-CV R2 values
of 0.96, 0.98 and 0.98 at the daily, monthly, and seasonal scales, respectively, which is highly superior
to traditional derivation algorithms and other techniques in previous studies. An initial increase
and subsequent decrease, which constitute the diurnal variation in the O3 concentration associated
with temperature and solar radiation variations, were captured. The highest concentration reached
approximately 112.73 ± 9.65 µg m−3 at 15:00 local time (1500 LT) in the BTH region. Summertime
O3 posed a high pollution risk across the whole BTH region, especially in southern cities, and the
pollution duration accounted for more than 50% of the summer season. Additionally, 43 and two days
exhibited light and moderate O3 pollution, respectively, across the BTH region in 2018. Overall, the
new method can be beneficial for near-surface O3 estimation with a high spatiotemporal resolution,
which can be valuable for research in related fields.

Keywords: hourly ozone; Beijing-Tianjin-Hebei; random forest; WRF-Chem; air pollution

1. Introduction

Since the 21st century, China has experienced a period of rapid economic growth,
urbanization, and industrialization. By 2020, the annual gross domestic product (GDP)
reached approximately 101,598.62 billion yuan, ranking second globally (China Statistical
Yearbook). However, the industrial structure in the early 21st century was extensive and
mainly depended on energy, raw materials, and labor, resulting in the large release of
air pollutants into the atmosphere [1–3]. These air pollutants exert a notable impact on
human health, vegetation growth, and environmental change [4–6]. It was estimated
that the number of fine particulate matter (PM2.5)-related deaths in China increased by
approximately 390,000 from 2002 to 2017 [2]. Therefore, air pollution control has become
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one of the primary tasks of government environmental management at local and national
scales. Fortunately, since 2012, China has conducted extensive real-time monitoring of six
conventional pollutants [7], including PM2.5, coarse particulate matter (PM10), nitrogen
dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3). Then, with
the proposal of an action plan for air pollution prevention and control by the Chinese
government on September 10, 2013, the air quality has generally improved, especially in
terms of the PM10 and PM2.5 concentrations, and notable decreasing trends have been
captured throughout mainland China [8–10]. Despite all these achievements, the near-
surface O3 concentration has exhibited the opposite trend to that of the particulate matter
concentration [11,12].

O3 is one of the main secondary air pollutants in China and is formed by volatile
organic compounds (VOCs) and nitrogen oxides (NOx) under solar radiation-driven reac-
tion conditions [13]. According to epidemiological studies, the morbidity and mortality
of respiratory diseases, heart diseases and even cancer are closely related to O3 loading
levels [14–16]. In addition, high O3 loadings can destroy the vegetation physiological struc-
ture and growth environment, resulting in crop reduction and ultimately affecting food
prices. Recently, several O3 pollution episodes have occurred in China, especially in urban
agglomeration areas, and the annual mean daily maximum 8-h (MDA8) O3 concentration
reached approximately 193, 170 and 165 µg m−3 across the Beijing-Tianjin-Hebei (BTH),
Yangtze River Delta (YRD) and Pearl River Delta (PRD) regions, respectively, in 2017 [17].
Therefore, many studies have been carried out on ozone pollution at local and national
scales, including field measurements of the ozone concentration [18,19], determination of
the relationship among ozone precursors [20,21], analysis of the influences of meteorology
on ozone pollution episodes [22,23], and attribution of emission sources [24]. However,
previous studies have mostly considered surface observation records, which exhibit a
discontinuous spatial distribution. In addition, due to the extremely high cost of manpower
and material resources associated with ground-based monitoring, ozone concentration
records are often discontinuous over time. Therefore, full-coverage high-quality near-
surface O3 datasets are urgently needed for future studies on environmental economics,
epidemiology, and climate change.

Two methods are generally employed to estimate the O3 concentration: model simula-
tion and algorithm inversion. In regard to model simulation, regional air quality prediction
models have been extensively adopted, e.g., the Community Multiscale Air Quality Model-
ing System (CMAQ), global chemical transport models (GEOS-Chem), Nested Air Quality
Prediction Modeling System (NAQPMS) and Weather Research and Forecasting-Chemistry
(WRF-Chem) model. Lu et al. (2019) applied the GEOS-Chem model to map the spatial
distribution of the MDA8 O3 concentration from May to August from 2016–2017 across
China, and the spatial correlation coefficient (R2) value reached approximately 0.67 [25].
Relying on the WRF-Chem model, Li et al. (2020) estimated the hourly O3 concentration
in summer across the Lanzhou region [26]. Compared to surface measurements, the R2

values at each station were all consistently less than 0.4. Then, based on the above models,
the formation, transport, and dissipation of O3 could be explained in detail via mechanism
analysis [27–29]. However, deviations occurred from emission inventories, resulting in
many uncertainties in O3 estimation. With the improvement of traditional statistics and the
development of mathematical algorithms, the aforementioned problem has been increas-
ingly resolved. Among the various techniques, traditional statistical models, e.g., multiple
linear regression (MLR), linear mixed effect model (LME), geographically weighted regres-
sion (GWR), land use regression (LUR) and generalized additive model (GAM), have been
widely implemented to estimate the concentration of air pollutants [30–32]. Zhang et al.
(2020) adopted a GWR model to estimate the monthly O3 concentration in eastern China,
and the validation based R2 value reached approximately 0.77 [33]. Thereafter, due to
their strong data mining and information capture abilities, machine/deep learning-based
methods have increasingly replaced traditional statistical methods. Zhan et al. (2018)
selected the random forest (RF) model to estimate the MDA8 O3 concentration in 2015
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across China with a cross-validation R2 value of 0.69 [34]. Then, based on the extreme
gradient boosting (XGBoost) algorithm, the daily O3 concentration was simulated at the
national scale, and the cross-validation R2 value reached 0.78 [22]. In addition, other ma-
chine learning methods have been widely applied to derive O3 and other air pollutant
concentrations at national and local scales [35,36]. Despite all these developments, the
estimation accuracy remains low, and high uncertainties still persist in previous algorithms.
Furthermore, simulation of the O3 concentration in most previous studies occurred at a
coarse temporal resolution, i.e., monthly, and daily resolutions, which cannot meet the
requirements of meticulous research on short-term ozone pollution episodes. Therefore,
accurate inversion of the hourly O3 concentration is urgently needed for environmental
governance and policy implementation purposes.

Here, our objective is to establish an advanced approach to determine the full-coverage
hourly accurate near-surface ozone concentration. Throughout all of mainland China, as
one of the leading political, economic, and cultural centers, the BTH region is typically
exposed to the highest O3 pollution burden. Therefore, this region was selected as an
example in this study. For this purpose, the WRF-Chem model was combined with the
RF method, meteorological factors, and other ancillary datasets to simulate the hourly O3
concentration across the whole BTH region from 1 January 2018, 00:00 local time (0000 LT)
to 31 December 2018, 23:00 local time (2300 LT) at a horizontal resolution of 9 km × 9 km.
In addition, we compared our algorithm to other similar algorithms and studies. Based
on this approach, an hourly ozone map was established covering the BTH region, and
we further performed a comprehensive investigation of the spatial distribution of the O3
concentration and ozone pollution level in the BTH region.

2. Materials and Methods
2.1. Study Area

In this study, the hourly O3 concentration in the BTH region is estimated. This region
is located in northern China at latitudes and longitudes ranging from 36.0◦ N–42.6◦ N and
113.5◦ E–119.8◦ E, respectively. This region covers an area of approximately 218,000 km2

and includes Beijing (BJ) and Tianjin (TJ) and 11 cities in Hebei Province (Baoding (BD),
Cangzhou (CZ), Chengde (CD), Handan (HD), Hengshui (HS), Langfang (LF), Qinhuang-
dao (QHD), Shijiazhuang (SJZ), Tangshan (TS), Xingtai (XT) and Zhangjiakou (ZJK)). In
addition, this area hosts more than 8% of the population of China. As one of the large
urban agglomerations in China, regional industrialization, urbanization, and motorization
are closely related to changes in the atmospheric environment, thus forming a symbiotic sit-
uation among the emissions of coal fires, motor vehicles, and industrial exhaust. Especially
regarding the emissions of O3 precursors, i.e., NOx and VOCs, a notable increasing trend
has been captured in recent years, resulting in heavy ozone pollution in this region [16].
High ozone loading also seriously affects the health of residents. When the MDA8 O3
concentration met the Chinese Ambient Air Quality Standards (CAAQS) Grade II standard,
an increasing of 10 µg m−3 O3 concentration could lead to about a 0.31% increase in daily
emergency room visits in Beijing [37]. In addition, a nonlinear association was exited
between ozone and ischemic stroke, and younger adults are more susceptible to extremely
high ozone levels than the elderly population in Beijing [38].

2.2. Datasets
2.2.1. Measured Near-Surface Ozone

Hourly near-surface O3 records were collected from 87 state-managed environmental
real-time monitoring stations across the BTH region. Figure S1 shows the spatial distri-
bution of the O3 monitoring stations. In general, all cities included more than three sites.
Beijing and Tianjin contained the most stations, with 12 and 20 monitoring stations, re-
spectively. In this study, observation records from 0000 LT (GMT+8) on 1 January 2018, to
2300 LT on 31 December 2018, were collected as training samples and validation datasets.
Moreover, to prevent systematic errors caused by the monitoring processes, observation



Int. J. Environ. Res. Public Health 2022, 19, 8511 4 of 19

records exceeding three times the standard deviation were eliminated. In addition, to
avoid instrument failure, any values remaining constant for three consecutive hours were
removed [39]. In regard to the state-managed environmental real-time monitoring sta-
tions, the O3 concentration was measured via the ultraviolet spectrophotometry method.
However, the air quality monitoring protocol was amended on 1 September 2018 [40].
Therefore, we transformed the observed concentrations before this date via multiplication
with a fixed coefficient, which was approximately 0.92 [41]. An uneven spatial distribu-
tion of the measurement stations occurs in the BTH region, resulting in multiple stations
existing in the same grid. Therefore, we calculated the average concentration if one grid
contained multiple records. Eventually, 289,553 effective hourly O3 records were collected
for modeling.

2.2.2. WRF-Chem-Simulated Ozone

In our two-stage model, the WRF-Chem model version 3.9.1 (WRF-Chem 3.9.1) was ap-
plied to simulate the O3 concentration with temporal and spatial resolutions of 1 h and 9 km,
respectively, at the first stage [42]. In regard to the WRF-Chem model, meteorological and
emission data are the essential driving factors of the initial field and boundary conditions.
Meteorological data were collected from the National Centers for Environmental Prediction
(NCEP) Final Operational Global Analysis dataset with temporal and spatial resolutions of
6 h and 1◦ × 1◦, respectively. In terms of the adopted emission datasets, anthropogenic and
biogenic emissions inventory data were obtained from the China Multiresolution Emission
Inventory (MEIC) and Model of Emissions of Gases and Aerosols from Nature (MEGAN)
at horizontal and temporal resolutions of 0.25◦ × 0.25◦ and 1 month, respectively [43].
To ensure temporal consistency, all emission driving datasets were interpolated to the
hourly scale.

2.2.3. Meteorological Factors

Ozone formation is greatly limited by meteorological conditions [44]. Based on this
consideration, eight meteorological factors, i.e., the 2-m temperature (TEM, unit: K), 10-m
wind speed (WS, unit: m s−1) and wind direction (WD, unit: degree), solar radiation (RAD,
unit: W m−2), boundary layer height (BLH, unit: m), surface pressure (SP, unit: kPa),
relative humidity (RH, unit: %) and total evaporation (EVA, unit: mm) were selected to
reflect the generation, transport and dissipation processes of O3. However, most currently
available meteorological datasets do not reach the hourly temporal resolution. Fortunately,
fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanal-
ysis products (ERA5) have been released since 2018 (www.ecmwf.int), and the temporal
resolutions have been increased to hourly intervals. Moreover, we interpolated the spatial
resolutions of the above meteorological factors from 0.25◦ × 0.25◦ to 9 km with the bilinear
interpolation method to ensure data consistency.

2.2.4. Other Ancillary Data

Vegetation can release biogenic volatile organic compounds (BVOCs), which are
also an important precursor of ozone generation [45]. Here, we collected annual cover
vegetation data (CVL, the sum of low and high cover vegetation levels) sourced from the
ERA5 land version dataset on a single level at a horizontal resolution of 0.25◦ × 0.25◦.
In addition, the hourly vertical integral of the divergence in the ozone flux (VIDO) was
retrieved from the ERA5 product to reflect the ozone loading. Similar to meteorological
factors, the above two parameters are both resampled to the same spatial resolution as that
of the WRF-Chem-simulated O3 concentration.

2.3. Methodology
2.3.1. Two-Stage Model

To estimate the full-coverage near-surface O3 concentration in the BTH region, a two-
stage model was established in this study. Figure 1 shows a flowchart of our two-stage

www.ecmwf.int


Int. J. Environ. Res. Public Health 2022, 19, 8511 5 of 19

model. At the first stage, the WRF-Chem model was employed to explain the generation
processes of O3. In addition, the impacts of anthropogenic and natural emissions on
O3 concentrations were revealed. The WRF model is a mesoscale numerical simulation
and data assimilation system that can simulate physical processes at cloud and weather
scales [46]. Moreover, to improve the simulation accuracy, three- and four-dimensional
variational assimilation algorithms and multilayer nesting grids were adopted in the
latest version of the WRF model. To reveal the chemical processes of ozone, we adopted
the online coupled chemical transport module of the WRF model, i.e., the WRF-Chem
model [42]. For this model, the meteorological conditions and chemical composition can be
synchronously and completely simulated, which exhibit the same time step, simulation
areas, spatial resolution, and vertical coordinates, in addition to realizing two-way feedback
simulation of atmospheric and chemical substances in real-time. In addition, this model
can be employed for the simulation of the emission and transportation of atmospheric
chemical components, and the interaction between gaseous pollutants (O3 and NO2) and
particulate matter (PM2.5 and PM10) can be exactly captured. In this study, a double nesting
grid was built with the Lambert projection at the first stage of our 2-stage model. In regard
to the first-level domain, a grid with a size of 64 × 56 was established at a horizontal
resolution of 27 km × 27 km, which could cover most of North China. Then, to further
improve the simulation accuracy and resolution, the second domain (D02) was established
based on the results of the first domain at a horizontal resolution of 9 km × 9 km (size:
81 × 87), which could cover the whole BTH region. In addition, for the purpose of physical
mechanism unification, both grids were established under the same configurations as the
boundary layer scheme of Yonsei University [47], Noah land surface scheme [48], Grell
three-dimensional cumulus parameterization scheme [49] and Morrison double-moment
microphysics scheme. Moreover, the radiation transport scheme was unified between the
two domains, and the Goddard [50] and rapid radiative transfer models [51] were selected
for the shortwave and longwave radiation schemes, respectively, of the WRF-Chem model.
In addition, the chemical mechanism was consistent between the two domains, which
entailed the Carbon-Bond Mechanism version Z [52]. In terms of the simulation of the
near-surface O3 concentration, due to the inherent limitations of the WRF-Chem model, a
monthly simulation cycle was set. Before simulation in each month, 48-h spin-up processes
were first conducted for model preheating. Through the WRF-Chem model, the hourly
ozone concentration was preliminarily simulated from 1 January 2018 to 31 December 2018,
across the BTH region.
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However, because notable spatiotemporal heterogeneities exist in O3 concentration
data, deviations are still found when only employing the WRF-Chem model in the first
stage. Therefore, we selected the RF model [53] to further determine the relationship
between O3 and various independent variables at the second stage to improve the O3
inversion accuracy with Equation (1).

O3_Prei,j,h = fRF

[
WRFO3i,j,h , TEMIi,j,h, TEMi,j,h, RADi,j,h, . . . , RHi,j,h, CVLi,j,h

]
(1)

where O3_Prei,j,h denotes the simulated near-surface O3 concentration in grid i on day
j at hour h, WRFO3i,j,h denotes the WRF-Chem simulated near-surface O3 concentration
(WRFO3) in grid i on day j at hour h and TEMIi,j,h denotes the temporal information in grid
i on day j at hour h. In this study, a temporal weighted matrix was established according to
the method described by Xue et al., which includes the day of the year (DOY), time distance
of one day to spring, summer, autumn and winter, and local time (LT) [54]. In addition to
temporal information, VIDO, CVL and meteorological parameters, including TEM, RAD,
WS, WD, BLH, SP, EVA, and RH, in grid i on day j at hour h were selected as explanatory
variables for model construction. To ensure that all input factors could attain statistical
significance and avoid multicollinearity, correlation analysis and collinearity diagnosis
methods were adopted here. Table S1 lists the correlation coefficient (R) and variance
inflation factor (VIF) between the surface measured O3 concentration and all independent
variables used for modeling in 2018 across the BTH region. Overall, WRFO3, TEM, RAD,
WD, BLH and CVL imposed significant positive effects on O3 (p < 0.01). Among these
variables, except for WRFO3, the highest R value of 0.66 was attained by TEM. The O3
concentration exhibited a significant negative response to TEMI, WS, SP, EVA, RH and
VIDO, with R ranging from −0.08 to −0.56 (p < 0.01). Moreover, according to the threshold
proposed by Ziegel et al., if the VIF value is higher than 10, significant collinearity exists
among the variables [55]. In our model, the VIF values of all variables were lower than
4 (ranging from 1.04 to 3.91), which suggests that no multicollinearity occurred in the input
data of the RF model. Thus, significant interrelation and no multicollinearity indicated that
all independent variables selected in this paper could be considered in O3 concentration
estimation in 2018 across the BTH region.

Before hourly O3 simulation, we also evaluated the contribution of all independent
variables. Table 1 also lists the feature importance (FI) of all input datasets of our two-stage
model. The total FI value is 100%, which reflects the contributions of each independent
variable to model training, and a higher FI value indicates a higher contribution of the
RF model to O3 estimation. The highest contribution was yielded by WRFO3, with an
FI value of 59.2%. And the second major contributing factor was TEM, with an FI value of
14.1%. Generally, a high temperature facilitates the volatilization of VOCs, and heavy O3
pollution episodes usually occur at high temperatures [56]. In addition, high temperatures
can affect atmospheric turbulence and accelerate photochemical reactions [57]. Figure S1
also shows the mean temperature in the BTH region. In general, the mean temperature
reaches approximately 283.75 K, and a high temperature was captured in the southern
BTH region. Another vital reaction condition is radiation, which accounts for ~6.6% of the
estimated hourly O3 concentration. Radiation is a necessary condition for photochemical
reactions, which could limit the release of biological VOCs and the photodissociation re-
action rate, resulting in O3 loading changes. The next important contributing factor was
RH (FI value: ~5.4), which can affect radiation transfer, reduce the air temperature, and
accelerate O3 dissipation. Moreover, the total contribution of the considered temporal in-
formation and other meteorological factors reached approximately 14.7%, and these factors
could describe the temporal variation, generation, transport, and dissipation processes of
O3 across the BTH region.
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Table 1. Comparison of the model performances between our two-stage model and other widely
used traditional model used in air pollutant concentration estimation.

Model
SAMPLE-BASED 10-CV Station-Based 10-CV

R2 Slope RMSE MAE R2 Slope RMSE MAE

MLR 0.63 0.63 30.37 29.85 0.62 0.62 31.32 31.01
GAM 0.69 0.66 27.41 20.06 0.65 0.61 29.57 24.88
GWR 0.72 0.68 25.86 18.43 0.69 0.65 27.50 20.01
LME 0.81 0.79 20.21 14.78 0.79 0.77 22.03 17.27

LME + GWR 0.87 0.85 18.67 13.26 0.85 0.83 21.20 15.11
WRF 0.67 0.69 28.62 22.41 0.65 0.66 29.07 21.74

RF 0.91 0.88 15.84 11.72 0.87 0.85 20.02 14.53
WRF + RF 0.94 0.92 14.58 9.96 0.90 0.89 19.18 13.32

In addition, many traditional models used for O3 concentration estimation were
selected for training based on the same input datasets as those employed for our two-
stage model for comparison purposes, including MLR, LME, GWR, GAM and traditional
two-stage models.

2.3.2. Evaluation Approach

Two tenfold cross-validation (10-CV) approaches, i.e., sample- and station-based
10-CV approaches, were selected to evaluate the simulated results of our two-stage model.
In regard to the sample-based 10-CV approach, the total samples (the explained variable is
the measured O3, the explanatory variables include WRF-Chem-simulated O3, meteoro-
logical factors and other ancillary data, and each explanatory variable record corresponds
to 12 explanatory variables) were randomly divided into ten groups according to the
data samples. Among all partitions, nine partitions were selected as training samples
for modeling with the two-stage model, while the remaining samples were adopted as
the testing dataset. The above process was repeated ten times to ensure that all samples
were applied for one time testing and nine times modeling. In the station-based 10-CV
approach, the total samples were divided into ten subsets according to the O3 monitoring
stations. Similarly, all samples were considered nine times for training and once for testing.
Moreover, various statistical indexes, including regression equation parameters (slope and
intercept), goodness of fit (R2), root mean square error (RMSE) and mean absolute error
(MAE), were employed to evaluate the consistency between the simulated and observed
O3 concentrations.

3. Results
3.1. Overall Accuracy Evaluation

Generally, the two-stage model achieved a strong data-mining ability. Figure 2 shows
the sample-based 10-CV results of our model in terms of O3 estimation on an hourly basis
across the BTH region. Because ozone formation occurs under solar radiation, we only
selected the results from 08:00 local time (0800 LT) to 1800 LT for illustration. Overall,
our model could establish relationships between the hourly measured O3 concentration
and independent variables with overall coefficient values of R2, RMSE and MAE of 0.94,
14.58 µg m−3 and 9.96 µg m−3, respectively. In addition, our model greatly avoided over-
fitting, and the slope of the best-fit linear regression lines reached 0.92. In addition, the
evaluation indexes at each hour were calculated. The two-stage model was highly accurate
in hourly O3 concentration simulation, with high sample-based 10-CV R2 values and linear
regression slopes ranging from 0.82 to 0.95 and 0.77 to 0.93, respectively. In addition, the
uncertainties in the two-stage model were low with a linear regression intercept, RMSE
and MAE ranging from 7.72–9.91 µg m−3, 12.70–17.89 µg m−3 and 9.12–12.54 µg m−3,
respectively. However, the reaction conditions of O3, such as radiation and temperature,
are different throughout the day, while the human activity and precursor concentration
levels also vary, resulting in the evaluation indexes exhibiting slight differences throughout
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the day. Better estimation performances were captured from 1200 to 1800 LT. The R2 values
were all greater than 0.93, and the slopes were all greater than 0.90. The precision difference
is caused by WRF-Chem simulation, which are mainly caused by the deviation of meteoro-
logical field simulation. Nevertheless, the R2 in morning hour are all more than 0.80. This
could further indicate that our model achieved a stable and robust simulation ability.
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Moreover, the station-based 10-CV results were evaluated. Figure S2 shows the station-
based 10-CV results from 0800 to 1800 LT in 2018 across the BTH region. Overall, our
two-stage model achieved a stable and robust spatial prediction ability. The ensemble
station-based 10-CV R2 and slope values were 0.90 and 0.89, respectively. Additionally, the
RMSE and MAE values were 19.18 and 11.32 µg m−3, respectively. This illustrates that
our two-stage model can predict the O3 concentration accurately in areas with no surface
measurement coverage. Furthermore, the station-based 10-CV R2 value was slightly lower
than that obtained with the sample-based 10-CV approach, which can further indicate the
robustness of our model. Similar to the sample-based 10-CV approach, significant diurnal
differences in accuracy were also captured with the station-based 10-CV approach. In con-
trast, more accurate simulation results were obtained from 1200 to 1700 LT, with R2 values
ranging from 0.89 to 0.90 and slopes ranging from 0.87–0.88. In addition, concentrations
with a higher density were distributed close to the 1:1 line. However, a slight underestima-
tion occurred with our model, which could be explained by the simulation uncertainty at
the first stage. Despite these limitations, based on our two-stage model, the relationship
between the O3 concentration and natural and human activities was precisely established.
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3.2. Station-Scale Accuracy Evaluation

The performance of our two-stage model in regard to hourly O3 concentration esti-
mation at each individual station was also evaluated (Figure 3). In general, our two-stage
model attained a high adaptability at each station across the BTH region with a mean
sample-based (station-based) 10-CV R2 value of 0.95 (0.91) and RMSE and MAE values of
14.25 µg m−3 (18.38 µg m−3) and 10.20 µg m−3 (13.32 µg m−3), respectively. Approximately
90% of stations achieved a high accuracy with a sample-based 10-CV R2 value higher
than 0.90. In contrast, the stations with better O3 estimation results were located in the
southwestern areas of the BTH region, and the highest sample-based 10-CV R2 value could
reach 0.98. Furthermore, this model yielded a low uncertainty, and approximately 74% and
68% of all stations attained RMSE and MAE values less than 16 and 10 µg m−3, respectively,
with the sample-based 10-CV approach. However, the uncertainty in the station-based
10-CV results was slightly higher than that in the sample-based 10-CV results, and at
approximately 42% and 31% of all stations, RMSE < 16 µg m−3 and MAE < 10 µg m−3 were
reached in regard to hourly O3 concentration estimation. This was mainly attributed to the
scattered site distribution and discontinuity in the spatial information, resulting in incorrect
assessment of the relationship between the hourly O3 concentration and other ancillary
data. In addition, we calculated the hour of occurrence of the highest 10-CV R2 value of
the O3 estimates to reflect the hourly adaptive model performance at the station scale. In
general, the estimated O3 concentrations at each station from 1400 to 1600 LT were the most
consistent with the ground measurements, and approximately 79% and 54% of all stations
attained the highest sample- and station-based 10-CV R2 values, respectively, during this
period. This can be interpreted as the stable relationships existing among the temperature,
radiation and O3 concentration from 1400–1600 LT, suitable for model training. In addition,
we selected eight stations, which located in different locations (central, northern, western,
eastern, northwestern, northeastern, southwestern, and southeastern regions) of Beijing-
Tianjin-Hebei region, to compare the mean hourly simulation results with the observation
O3 concentration (Figure S3). Overall, the simulation results are completely consistent with
the monitoring results, and the correlation coefficients are all more than 0.99.
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3.3. Temporal-Scale Accuracy Evaluation

First, we evaluated the estimation bias in a time series of the hourly O3 concentration
from 0800 to 1800 LT across the BTH region (Figure S4). Here, the bias was calculated as
the difference between the surface measured and estimated O3 concentrations. Overall, the
estimation bias indicated a notable diurnal variation involving an initial increase and sub-
sequent decrease. The maximum hourly O3 bias was captured at 1600 LT (~0.97 µg m−3),
while the minimum bias occurred at 1700 LT (~0.06 µg m−3). Notably, the biases from
1000–1400 LT were all negative, which indicates that there occurred a slight overestimation
with our model during this period. In contrast, the estimation bias from 1500–1800 LT
suggested slight underestimation. In addition, the standard deviation of the bias was
calculated for each hour, as shown in Figure S4. The hourly standard deviation of the bias
remained at a lower level, ranging from 12.70 µg m−3 (0900 LT) to 17.89 µg m−3 (1800 LT),
which is consistent with the O3 loading results. This further confirmed the stability of our
model for hourly O3 concentration estimation.

We also investigated the estimation performance at the daily scale, and the daily
sample-based 10-CV R2, RMSE and MAE values for the DOY were all calculated here.
Figure 4 shows the temporal performance of our two-stage model. In 2018, the sample-
based 10-CV R2 value ranged from 0.41 to 0.95, and the average R2 value reached ap-
proximately 0.84 across the BTH region. Overall, approximately 74.3% of all days in 2018
attained a 10-CV R2 value greater than 0.7. However, only three days attained a R2 value
lower than 0.50 because of the lack of training samples, and the training samples on these
days were at least a quarter fewer than those on the other days. Figure 4a also shows that
the R2 value in the spring and summer was lower than that in the summer. This disparity
occurred because the dominant photochemical reaction conditions (e.g., temperature and
radiation) in spring and winter are weak, which is adverse to simulating near-surface O3
concentration by the WRF-Chem model. RMSE and MAE were low across the BTH region,
and approximately 85.8% and 87.1% of all days in 2018 exhibited values less than 20 and
15 µg m−3, respectively. High values were mainly captured in summer because of intense
photochemical reactions, and severe O3 pollution days occurred during this season.
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The MDA8 O3 concentration is an important standard to evaluate the daily ozone
pollution level. Therefore, we also evaluated temporally synthesized MDA8 O3 data from
hourly samples in 2018 across the BTH region (Figure S5). At the daily scale, compared to
surface measurements, our model could accurately reflect daily MDA8 O3 variations with
a high consistency (R2 = 0.96, and slope = 0.94) and low uncertainty (RMSE = 9.84 µg m−3,
and MAE = 7.23 µg m−3). In addition, a significant consistency was captured between the
monthly and seasonal mean MDA8 O3 concentrations and surface observations, and the R2

(slope) value at both scales was 0.98 (0.98). Furthermore, the scatter points were distributed
close to the 1:1 line, which could also suggest that our method is reasonable and stable in
terms of O3 estimation. Moreover, at these two time scales, the estimation uncertainty was
reduced, with mean RMSE (MAE) values of 5.50 µg m−3 (4.22 µg m−3) and 4.69 µg m−3

(3.66 µg m−3) for the estimated monthly and seasonal MDA8 O3 concentrations, respec-
tively. Thus, our two-stage model could accurately describe O3 pollution across the BTH
region, and the derived full-coverage O3 concentration can be widely applied in research
on economics, epidemiology, and other related disciplines.

3.4. Spatial Distribution of Ozone Pollution in the BTH Region
3.4.1. Diurnal Variations in Ozone

Based on our two-stage model, the full-coverage hourly O3 concentration was esti-
mated. Figure S6 shows the spatial distribution of the hourly O3 concentration in the BTH
region from 0800 to 1800 LT in 2018. Overall, the average hourly O3 concentration reached
90.12 ± 5.17 µg m−3. Due to the notable limitations of photochemical reaction conditions,
O3 pollution exhibited significant diurnal variation. From 0800–1800 LT, a low level was
captured at sunrise with an O3 concentration of ~44.86 ± 9.65 µg m−3. Then, with increas-
ing temperature, solar radiation and human activities, the chemical reaction conditions
of O3 and precursor emissions were both enhanced, resulting in O3 pollution, and the
peak concentration reached approximately 112.73 ± 9.65 µg m−3 at 1500 LT. Severe O3
pollution occurred in the BTH region from 1300 to 1700 LT, with its concentrations higher
than 100 µg m−3. In general, the O3 concentrations in the morning (0800–1200 LT) were
lower than those in the afternoon (1300–1800 LT), and the O3 concentration in the afternoon
(~107.93 ± 8.09 µg m−3) was 1.57 times that in the morning (~68.74 ± 6.88 µg m−3).

In terms of the spatial distribution, approximately 46.5% of all areas was exposed to
high O3 levels with annual mean hourly O3 concentrations higher than 90 µg m−3, and
these high-O3 level areas were mainly located in the southeastern and northwestern parts of
the BTH region. However, significant diurnal variations in the spatial distribution occurred
in this region. From 0800–1000 LT, high-O3 loading areas were mainly concentrated in
the northern BTH region, at high altitudes. During this period, there occurred more
radiation than in low-altitude regions. Moreover, a large amount of cultivated land and
forestland cover the area, enhancing the emission of natural source-derived precursors of
photochemical reactions (e.g., VOCs, methane, and terpenes). Subsequently, the high-O3
pollution regions were mainly located in the southeastern and northwestern BTH areas. In
these areas, human activities contributed a large number of NOx and VOCs. Especially in
the southern BTH area, many heavy industrial enterprises are located, resulting in very
high anthropogenic emissions. Then, as the day progressed, due to the weakening in
human activities, the O3 concentrations in high-pollution areas decreased toward sunset
(1700–1800 LT). Overall, O3 pollution exhibits the spatial distribution characteristics of
high levels in the south and low levels in the north throughout the BTH region, which is
consistent with the spatial distribution of PM2.5 pollution [3]. These results indicated that
anthropogenic emissions are one of the primary causes of O3 pollution.

3.4.2. Seasonal Variations in Ozone

Due to seasonal subsolar point movement, solar radiation and temperature exhibit
notable seasonal variation, resulting in seasonal variations in the O3 concentration across the
BTH region. Figure 5 shows the spatially average MDA8 O3 concentration across the BTH
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region in 2018, and the seasonal MDA8 O3 concentration was synthesized from daily MDA8
O3 maps. In general, the O3 pollution levels revealed similar spatial patterns between
spring and summer. The mean MOD8 O3 concentration reached 120.33 ± 7.21 µg m−3

in spring. In addition, we calculated the proportion of O3 pollution time over 13 cities
throughout the BTH region in each season, as shown in Figure 5. The black and yellow
vertical lines indicate the proportion of O3 pollution time across the whole region. During
approximately 70.7% of the spring season, an MDA8 O3 concentration exceeding the
first-level pollution standard (100 µg m−3) was observed throughout the whole region.
Among the various areas, Xingtai, Hengshui, Handan and Cangzhou exhibited a longer
exposure to ozone pollution in spring. In summer, O3 pollution was severe, and the
mean MDA8 O3 concentration reached approximately 148.28 ± 32.04 µg m−3, which far
exceeded the first-level pollution standard of the ambient air quality standards in China.
In this season, all areas of the BTH region exhibited high O3 pollution levels with mean
MDA8 O3 > 100 µg m−3, and 32.0% of all areas attained a mean MDA8 O3 concentration
notably exceeding the second-level pollution standard (160 µg m−3) of the ambient air
quality standards. The high-value areas were mainly distributed in the southern and
northwestern BTH areas and included most cities in Hebei Province. Across the whole
BTH region, during approximately 94.6% of the time, MDA8 O3 > 100 µg m−3, while
during approximately 35.9% of the time, MDA8 O3 > 160 µg m−3. Among all cities in
this region, the Zhangjiakou region attained the highest proportion of pollution time, with
MDA8 O3 > 100 µg m−3 during 98.9% of the time. However, the time of exposure to
extremely serious O3 pollution (>160 µg m−3) time was relatively short in the Zhangjiakou
region. Overall, the time of exposure to extremely serious ozone pollution in 9 cities (i.e.,
Xingtai, Tianjin, Tangshan, Shijiazhuang, Langfang, Hengshui, Handan, Cangzhou and
Baoding) was longer than the average level in the BTH region, especially in Hengshui,
where MDA8 O3 > 160 µg m−3 accounted for 58.7% of the summer season. In contrast, the
temperature in this area was higher than that in the other areas of the BTH region (Figure S1),
suggesting stronger photochemical reaction conditions. Moreover, the anthropogenic
emissions of VOCs and NOx in these cities were higher than those in the other cities
due to the intense heavy and transportation industries, resulting in the emission of more
precursors, which is beneficial for O3 generation. In contrast, O3 pollution greatly decreased
in autumn and winter, and the average MDA8 O3 concentration was 81.59 ± 7.81 µg m−3

and 61.84 ± 8.09 µg m−3, respectively. Especially in winter, the MDA8 O3 concentration
in the BTH region throughout the winter was lower than 100 µg m−3. The main reason
is that the temperature and radiation greatly decrease with southward movement of the
direct subsolar point. Note that Xingtai, Hengshui, Handan and Cangzhou exhibited
O3 pollution time proportions ranging from 1.1–5.6% (>100 µg m−3). This phenomenon
indicated that although photochemical reaction conditions are unfavorable in winter, high
precursor emissions (sourced from motor vehicles and heating) could also increase the
risk of O3 pollution. In addition, significant spatial spillover effects were existed in O3
pollution, indicating that the four cities also are threatened by ozone pollution in the
surrounding areas.

3.4.3. O3 Pollution in the Beijing-Tianjin-Hebei Region

To further explore ozone pollution in the BTH region, we also estimated the daily
MDA8 O3 concentration in 13 cities (Figure 6). Overall, the daily mean MDA8 O3 concen-
tration reached approximately 103.01 ± 43.41 µg m−3 across the BTH region. Among the
various cities, the highest O3 pollution was captured in Hengshui, with a daily MDA8 O3
concentration of 113.73 ± 54.98 µg m−3. In contrast, the lowest MDA8 O3 concentration was
captured in Qinhuangdao, with an average concentration of 94.75 ± 43.66 µg m−3. In addi-
tion, with increasing DOY, the MOA8 O3 concentration exhibited a change characteristic of
first increasing and then decreasing in all cities, and the MOA8 O3 concentration peaked
from 1 June to 1 July. Note that O3 pollution occurred almost synchronously among the con-
sidered cities because of the integrity of the atmospheric transport conditions throughout
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the BTH region, which illustrates the importance of overall joint governance in this region.
Based on the daily MDA8 O3 concentration, individual air quality index (IAQI) values of
the daily average O3 concentration were calculated according to the method proposed by
the Technical Regulation on the Ambient Air Quality Index (HJ 633-2012). According to
this standard, the IAQI of an MDA8 O3 concentration ranging from 0~50, 51~100, 101~150,
151~200, 201~300 and >300 was defined as excellent, good, light pollution, moderate
pollution, heavy pollution, and serious pollution, respectively. Similar to the MDA8 O3
concentration, variations involving an initial increase and subsequent decrease were also
captured for the IAQI. The annual average IAQI value was approximately 58 across the
whole BTH region, indicating a good air quality under O3 loading. Despite these findings,
there remains a long pollution period from May to October. Especially during the period
from 1 June to 1 July, moderate O3 pollution days were observed.
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In addition, the proportion of O3 pollution days was investigated in this study
(Figure 7). Throughout the whole BTH region, there were no severe ozone pollution
days, and the excellent and good days of O3 level accounted for 53% and 35% in 2018, re-
spectively. However, 12% (43 days) and <1% (2 days) of 2018 exhibited light and moderate
O3 pollution, respectively. Similar to the seasonal spatial distribution of the MDA8 O3 con-
centration, Beijing, Chengde and Qinhuangdao maintained a low O3 pollution level, with
days exhibiting an excellent air quality in terms of O3 accounting for 59% (215 days) of the
year. In contrast, cities with high pollution levels were mainly located in the southern BTH
area, with light and moderate pollution days accounting for 17–19% and 1–5%, respectively,
of 2018. These results indicated that O3 governance is urgently required in the southern
BTH area.



Int. J. Environ. Res. Public Health 2022, 19, 8511 14 of 19

Int. J. Environ. Res. Public Health 2022, 19, x 14 of 20 
 

51~100, 101~150, 151~200, 201~300 and >300 was defined as excellent, good, light pollution, 

moderate pollution, heavy pollution, and serious pollution, respectively. Similar to the 

MDA8 O3 concentration, variations involving an initial increase and subsequent decrease 

were also captured for the IAQI. The annual average IAQI value was approximately 58 

across the whole BTH region, indicating a good air quality under O3 loading. Despite these 

findings, there remains a long pollution period from May to October. Especially during 

the period from June 1 to July 1, moderate O3 pollution days were observed. 

 

Figure 6. Daily MDA8 O3 concentration (a) and IAQI of the daily average O3 concentration (b) in 13 

cities and the whole BTH region. 

In addition, the proportion of O3 pollution days was investigated in this study (Figure 

7). Throughout the whole BTH region, there were no severe ozone pollution days, and the 

excellent and good days of O3 level accounted for 53% and 35% in 2018, respectively. 

However, 12% (43 days) and < 1% (2 days) of 2018 exhibited light and moderate O3 pollu-

tion, respectively. Similar to the seasonal spatial distribution of the MDA8 O3 concentra-

tion, Beijing, Chengde and Qinhuangdao maintained a low O3 pollution level, with days 

exhibiting an excellent air quality in terms of O3 accounting for 59% (215 days) of the year. 

In contrast, cities with high pollution levels were mainly located in the southern BTH area, 

with light and moderate pollution days accounting for 17–19% and 1–5%, respectively, of 

2018. These results indicated that O3 governance is urgently required in the southern BTH 

area. 

Figure 6. Daily MDA8 O3 concentration (a) and IAQI of the daily average O3 concentration (b) in
13 cities and the whole BTH region.

Int. J. Environ. Res. Public Health 2022, 19, x 15 of 20 
 

 

Figure 7. O3 pollution level in each city of the BTH region in 2018. 

4. Discussion 

Here, we first compared the model performance between our two-stage model and 

six widely applied traditional models in air pollutant concentration estimation (Table 1). 

In regard to these models, the same hourly training datasets, except for WRFO3, across the 

BTH region in 2018 were selected for modeling. Among these models, due to the simple 

linear relationship, the MLR model achieved a poor estimation accuracy with low R2 val-

ues of 0.63 and 0.62 for the sample- and station-based 10-CV results, respectively. In ad-

dition, the RMSE (30.37–31.32 μg m−3) and MAE (29.85–31.01 μg m−3) values were the high-

est. Then, since potential nonlinear relationships were captured and spatial relationships 

were considered, the estimation capability of the GAM and GWR models was higher. The 

sample-based 10-CV R2 values of these two models increased to 0.69 and 0.72, respec-

tively, and the RMSE and MAE values also declined. Furthermore, because fixed and ran-

dom effects were considered, the estimation capacity of the LME and LME+GWR models 

was enhanced with sample-based 10-CV R2 values of 0.81 and 0.87, respectively. As for 

using the chemical transport model alone, due to the fixity of its chemical scheme and the 

Figure 7. O3 pollution level in each city of the BTH region in 2018.



Int. J. Environ. Res. Public Health 2022, 19, 8511 15 of 19

4. Discussion

Here, we first compared the model performance between our two-stage model and six
widely applied traditional models in air pollutant concentration estimation (Table 1). In
regard to these models, the same hourly training datasets, except for WRFO3, across the
BTH region in 2018 were selected for modeling. Among these models, due to the simple
linear relationship, the MLR model achieved a poor estimation accuracy with low R2 values
of 0.63 and 0.62 for the sample- and station-based 10-CV results, respectively. In addition,
the RMSE (30.37–31.32 µg m−3) and MAE (29.85–31.01 µg m−3) values were the highest.
Then, since potential nonlinear relationships were captured and spatial relationships were
considered, the estimation capability of the GAM and GWR models was higher. The
sample-based 10-CV R2 values of these two models increased to 0.69 and 0.72, respectively,
and the RMSE and MAE values also declined. Furthermore, because fixed and random
effects were considered, the estimation capacity of the LME and LME+GWR models was
enhanced with sample-based 10-CV R2 values of 0.81 and 0.87, respectively. As for using
the chemical transport model alone, due to the fixity of its chemical scheme and the
particularity of atmospheric transmission, the simulation results are relatively poor. The
statistical indicators are even lower than most traditional statistical models with the R2 of
0.67 and 0.66 for sample-based and station-based 10-CV, respectively. Meanwhile, the RMSE
and MAR of WRF-Chem results alone are also high, which is close to twice that of WRF+RF
model. In regard to the machine learning method, we investigated the performance of the
RF model. In comparison, with WRFO3 input, the coefficient of determination R2 increased
by 0.03 for both the sample- and station-based 10-CV results. Moreover, the uncertainty
(RMSE and MAE) decreased by nearly 10%. These results indicated that our two-stage
model is superior to the other traditional models and highlighted the importance and
stability of WRFO3.

We also compared our results with those obtained with methods adopted in similar
studies. Several previous publications are summarized in Table S2 for comparison. Overall,
our two-stage model yielded a superior estimation ability than that yielded by previous
methods in terms of the various temporal scales. At the hourly scale, compared to the
estimation of Liu et al. with a chemical transport model, i.e., the CMAQ model, the CV
R2 value is at least doubled [58]. Meanwhile, the CV R2 value of our model is 0.29 higher
than using WRF model alone in BTH region in 2018 [59]. In addition, our model yielded
a better sample-based 10-CV R2 value than that reported in a previous regional study
(R2 = 0.81) on the BTH region from 2010 to 2017 with only the RF model for hourly
O3 estimation [35]. Then, we compared our model to other daily mean or MDA8 O3
concentration estimation studies based on machine learning methods, e.g., the data fusion
model, XGBoost model and RF algorithm, conducted at the national and regional scales
with an approximate horizontal resolution of 0.1◦ × 0.1◦ [26,34,36,44]. As indicated in
Table S2, the CV R2 values are all <0.8 (0.59–0.79), and the RMSE values are all >20 µg m−3,
which indicates that our model achieves an excellent performance. Furthermore, our two-
stage model outperforms many statistical models and machine learning models at the
monthly and seasonal scales [33,44]. Although Liu et al. employed the XGBoost model to
achieve a high accuracy with R2 values of 0.90 and 0.93 at the monthly and seasonal scales,
respectively [44], the index values are 0.98 at both scales for our model, which suggests a
smaller error than that in the aforementioned studies. Compared with our pervious study,
our estimation of near surface O3 concentration in Beijing-Tianjin-Hebei region has been
slightly improved [60]. In future, we can be extended this method to a wider range.

The purpose of this study was to accurately map the full-coverage hourly O3 con-
centration. However, there remain certain limitations, which will be improved in future
research. First, the horizontal resolution can be further improved. Currently, with the
needs of refined research in epidemiology, economics and environmental sciences, higher-
horizontal resolution high-quality O3 maps, e.g., 0.01◦ × 0.01◦, can provide basic data
guarantees for more accurate research. Second, the study area should be extended. Here,
we only selected the BTH region as an example. Through evaluation, our model achieved
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an excellent spatial prediction ability, and the model can be widely applied in the estimation
of the near-surface O3 concentration at the national scale in the future. Third, the time
series should also be expanded. The O3 monitoring network was established in 2013,
and historical records remain unavailable. Therefore, based on the method proposed in
this paper, the relationship between the measured O3 and other factors can be built since
2013, and the high-accuracy full-coverage hourly O3 historical records can be derived over
the long term. Furthermore, the WRF-Chem model can predict ozone concentration in
future, based on the relationship between the measured O3 and other factors, we also can
forecast the near surface O3 concentration accurately in our future work, which can also be
beneficial for research in related fields.

5. Conclusions

Currently, the joint management of O3 and PM2.5 comprises the focus of air pollution
control in China. However, high-quality near-surface O3 concentration data are relatively
scarce in China. This paper attempts to determine the full-coverage hourly near-surface
O3 concentration, and the BTH region was selected as an example. Therefore, a fusion
algorithm (WRF-Chem and RF models) was established that combined meteorological and
anthropogenic emission data to estimate the hourly O3 concentration in 2018 throughout
the BTH region. The assessment results indicated that our model achieved a high accuracy
with a sample-based 10-CV R2 value of 0.94 and RMSE of 14.58 µg m−3. Moreover, the
O3 concentration estimated with the proposed method was extremely consistent with
station-based measurement at varying temporal scales. In addition, after incorporating
the chemical transport mechanism and with the use of a data-mining algorithm, the
performance of our two-stage model was highly superior to that of the traditional derivation
algorithm and methods proposed in previous related studies. With this model, hourly
and seasonal O3 concentration maps were generated across the BTH region in 2018. The
obtained results indicated that the BTH region faces a considerable O3 exposure risk with
an average hourly O3 concentration of 90.12 ± 5.17 µg m−3, and the peak concentration
reached approximately 112.73 ± 9.65 µg m−3 at 1500 LT. Moreover, severe O3 pollution
mainly occurred in summer. In addition, through calculation of the IAQI associated with
the O3 concentration, we found that the vast majority of cities suffered slight pollution
in 2018 throughout the BTH region, and severe O3 pollution regions were observed in
the southern BTH area. In summary, the established method is beneficial for accurate O3
concentration estimation, and O3 maps can be widely applied in economics, epidemiology,
and environmental science research.
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