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Abstract: With the progress of high-quality development in China, residents have begun to focus
on the air quality of their residential areas in an effort to reduce the health threats of air pollution.
Gradually, the risk associated with air pollution has become an important factor affecting housing
prices. To quantitatively analyze the impact of air pollution on house prices, panel data, including
data for fine particulate matter (PM2.5) concentrations, house prices and other auxiliary variables
from 2009 to 2018, were collected from 16 districts in Beijing, China. Based on this dataset, ordinary
least squares (OLS), moderating effect and threshold effect models were constructed for empirical
investigation. Within the studied decade, PM2.5 pollution shows a significant decreasing trend of
−3.79 µg m−3 yr−1 (p < 0.01). For house prices, the opposite trend was found. The empirical results
indicate that PM2.5 pollution has a negative effect on house prices and that every 1% increase in
PM2.5 causes an approximately 0.541% decrease in house prices. However, the inhibition of PM2.5

on housing prices is moderated by regional educational resources, especially in areas with high
education levels. In addition, per capita disposable income can also cause heterogeneities in the
impact of PM2.5 on house prices, whereby the threshold is approximately CNY 101,185. Notably,
the endogeneity problems of this study are solved by the instrumental variable method, and the
results are robust. This outcome suggests that the coordinated control of air pollution and balanced
educational resources among regions are required for the future sustainable development of the real
estate market.

Keywords: PM2.5 pollution; house price; China; educational resources; ordinary least squares

1. Introduction

At present, urbanization and economic growth are accelerating in China, especially in
metropolises and city clusters. However, China’s rapid modernization has been accompa-
nied by serious air pollution, a problem closely related to human health [1–3]. Among all
air pollutants, fine particulate matter (with an aerodynamic diameter of less than 2.5 µm,
PM2.5) is particularly harmful. Long-term exposure to high PM2.5 loading significantly in-
creases the risk of developing cancer as well as cardiovascular and respiratory diseases [4,5].
In addition, PM2.5 pollution poses a threat to ecological security [6–8]. At the same time, in
addition to providing feedback regarding the quality of the atmospheric environment, such
pollution can affect the living circumstances of urban residents [9,10]. Especially for areas
experiencing high economic development, the economic losses caused by air pollution are
substantial [11,12]. Meanwhile, with the increase in media publicity regarding the problem
and rising income levels, low air pollution risk has become a goal for urban Chinese people.
An increasing number of people tend to live in areas with low PM2.5 loading, resulting in
counter urbanization, which has become a new challenge for environmental management
and urban planning at the regional and national scales [13].
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For urban residents, housing conditions are the foundation of high-quality devel-
opment. Since the financial crisis of 2008, a long-term housing boom has appeared in
China. According to the statistical data from the National Bureau of Statistics, the total
sales of commercial housing in China were only approximately CNY 4399.5 billion in 2009.
In contrast, they surpassed CNY 14,997.3 billion in 2018, accounting for ~16.3% of the
gross domestic product (GDP). During this period, house prices increased substantially
in China’s megacities, especially in Beijing, and real-averaged house prices increased by
~41.8% from 2012 to 2015 [14]. There are many factors that cause fluctuations in house
prices in China [15–19]. Liu et al. used a demand-supply framework and annual data
from 31 provinces across China from 2000 to 2018 to argue that five variables (i.e., land
prices, real estate developer loans, per capita savings and the proportion of individuals
with college or higher educational degrees) accounted for ~72% of the increase in house
prices [20]. In addition, other phenomena, such as education level, entertainment facilities,
wedding time, monetary factors and policy orientation, have been found to be potential
influencing factors in China [21–25].

Since 2015, concomitant with the proposal by the United Nations of sustainable de-
velopment goals (SDGs), the Chinese government has attached substantial importance to
environmental protection [26]. Meanwhile, the awareness of environmental protection has
gradually improved at the government, enterprise and individual scales. At present, envi-
ronmental risk factors have gradually been incorporated into the considerations of house
buyers. Subsequently, several researchers have examined the negative externality of the
environmental quality of residential areas with respect to house prices [27–30]. Among all
potential influence factors, air pollution, especially for PM2.5 pollution, plays an important
role in house prices. Dai et al. found that higher PM2.5 risks were accompanied by lower
house prices in Nanjing, China [9]. Similarly, the negative effects of PM2.5 concentration
on housing prices were also found across cities in China, and the heterogeneity is also
captured [31]. Sun and Yang, using the quantile regression and geographically weighted
quantile regression, found the presence of asymmetric and spatial non-stationary effects
among PM2.5 and housing prices in China [32]. Furthermore, the neighboring pollution
also can lead to changes in local home prices [33]. Despite this wealth of literature, the
mechanism of the effect of air pollution on the real estate market is less analyzed. More
importantly, with the proposal of the ‘three-child policy’ in 2021 [34], the relationship
between housing prices and the environment has become a matter of concern for every
family, one that bears importance on the healthy growth of children in China.

The goal of this study was to investigate the impact of PM2.5 pollution on house
prices. For this purpose, we collected panel data in all of Beijing’s administrative divisions
from 2009 to 2018, including data on house prices, PM2.5 concentrations and auxiliary
variables. Based on these datasets, the spatiotemporal variations in PM2.5 pollution and
house prices were analyzed in detail. Then, an ordinary least squares (OLS) model was
used as an econometric model to quantify the impact of PM2.5 concentrations on house
prices. In addition, considering actual local/regional circumstances, the moderating effects
of educational resources are explained. Finally, the per capita disposable incomes of local
residents were used as a threshold effect to accurately identify the heterogeneities of the
impact of PM2.5 concentrations on house prices. This study will provide a strong scientific
basis and literature reference for regional urban planning, environmental protection and
the benign development of the real estate market.

2. Study Area

China’s capital, Beijing, is the country’s center of political, cultural, scientific and tech-
nological innovation. Figure 1 shows the geographical location of Beijing in northern China
at longitudes and latitudes ranging from 115.7◦–117.4◦ E and 39.4◦–41.6◦ N, respectively.
There are currently 16 administrative divisions in Beijing: Changping (CP), Chaoyang (CY),
Daxing (DX), Dongcheng (DC), Fangshan (FS), Fengtai (FT), Haidian (HD), Huairou (HR),
Mentougou (MTG), Miyun (MY), Pinggu (PG), Shijingshan (SJS), Shunyi (SY), Tongzhou
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(TZ), Xicheng (XC) and Yanqing (YQ). The CY, DC, FT, HD, SJS and XC districts are usually
identified as the central urban areas. Figure 1 also shows the distribution of population
density in Beijing. Generally, high population densities were captured in the central urban
areas. The highest population density was captured in the XC district, with a value of
26,603 persons km−2, followed by the DC, HD, CY, SJS and FT districts, with mean pop-
ulation densities ranging from 7385 to 19,946 persons km−2. In contrast, the population
density in the YQ district is the lowest (~173 persons km−2).

Figure 1. Beijing’s 16 administrative divisions. (a) is the geographical location of Beijing in China;
(b) is the distribution of 16 districts in Beijing. The background colors indicate the distribution of
population density (persons km−2); these data are available from the resource and environmental
science and data center (https://www.resdc.cn/, accessed on 1 January 2022).

3. Dataset and Methodology
3.1. Dataset
3.1.1. House Prices

The annual average house prices (unit: yuan) were collected in the 16 districts of Beijing
from 2009 to 2018. These data were sourced from Anjuke, Inc., a real estate information
service enterprise in China. The data are available at https://www.anjuke.com/fangjia/
(accessed on 1 January 2022). However, because of inflation effects, authentic house prices
will be overvalued. Therefore, to calculate the authentic house prices of each district in
Beijing, we used the provided house prices divided by a GDP deflator (i.e., the ratio of
nominal GDP to real GDP).

3.1.2. PM2.5 Concentrations

The ground-level PM2.5 concentrations were collected from the ChinaHighPM2.5
datasets (http://doi.org/10.5281/zenodo.3987359, accessed on 1 January 2022), with a
high horizontal resolution of 1 km. In this dataset, the daily PM2.5 concentrations were
generated using a linear mixed effect (LME) model combined with the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric
Correction (MAIAC) aerosol optical depth products and meteorological factors, including
boundary layer height (BLH), evaporation (ET), total precipitation (PRE), relative humidity
(RH), surface pressure (SP), 2-m temperature (TEM), wind direction (WD) and wind speed
(WS), which are potentially relevant variables in PM2.5 pollution. The build processes were

https://www.resdc.cn/
https://www.anjuke.com/fangjia/
http://doi.org/10.5281/zenodo.3987359
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explained in our previous study in detail [35]. Here, we extracted the PM2.5 concentrations
of the corresponding pixels in each district of Beijing from 2009 to 2018. To avoid errors, we
omitted pixels with values missing for more than ten days. Then, the monthly and annual
concentrations were collected to analyze PM2.5 temporal trends and the impacts on house
prices, respectively.

3.1.3. Control Variables

According to previous research, greening facilities and socioeconomic factors can
affect house prices. The descriptive statistics of all the control variables used in our study
are listed in Table 1. In addition to annual PM2.5 concentrations, we selected seven other
indices as control variables to reflect the greening facilities and socioeconomic status of all
districts in Beijing during 2009–2018. These variables include GDP, the gross output value
of residential services and other services (Service), per capita disposable income (Income),
the gross output value of the construction industry (Industry), the normalized difference
vegetation index (NDVI), the registered population (Population) and the number of private
cars (Traffic). Similar to house prices, the sample capacities of all the control variables are
160 samples. In addition, the mean values and the standard deviation (Std) of all the control
variables are provided. All other control variables were drawn from the regional statistical
yearbook of Beijing with the temporal and spatial resolution of the district and annual level.
In particular, in order to eliminate the influence of the heteroscedasticity of the model, we
logarithmize all the continuous variables. Meanwhile, we made a collinearity diagnosis.
The Variance Inflation Factor (VIF) values are all less than 10, which indicates that there is
no collinearity problem [36].

Table 1. The descriptive statistic of all control variables (n = 160).

Abbreviation Control Variable Unit Mean Std

PM2.5 Annual averaged concentration of PM2.5 µg m−3 67.33 15.95
GDP Gross domestic product Billion yuan 98.07 118.00

Service Gross output value of residential services and other services Million yuan 71,202.03 78,697.96
Income Per capita disposable income Yuan 32,551.19 9659.59

Industry Gross output value of the construction industry Million yuan 379.56 368.15
NDVI Normalized Difference Vegetation Index - 0.39 0.09

Population Registered population Thousand person 920.60 572.60
Traffic Number of private cars Set 254,223.80 226,015.90

3.1.4. Other Variables

Due to the uneven distribution of urban educational resources, a derivative, i.e., school
district housing, occurs in the real estate market across Beijing, which could also impact
house prices on a local scale. Therefore, to investigate the moderating effect of educational
resources on the relationship between PM2.5 and house prices, the gross regional product of
education from 2009 to 2018 in all districts was selected as the index to reflect the education
level. These data were collected from the regional statistical yearbook of Beijing. Further-
more, to avoid the endogeneity problems caused by missing variables, the temperature was
selected as the instrumental variable. Temperature can affect the generation and diffusion
of PM2.5. In addition, it has no direct relationship with house prices. Here, the annual
averaged temperature during 2009–2018 was adopted from the fifth-generation European
Center for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalysis dataset of
the global climate (ERA5), with a horizontal resolution of 0.25◦ × 0.25◦ [37].

3.2. Methodology
3.2.1. Benchmark Regression Model

To authenticate the test of the impact of PM2.5 concentrations on house prices, we
selected the OLS model as the benchmark regression model. This model is a mature model
in econometrics, environmental economics and other economic-related research, and it
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was proven to be one of the econometric models that can identify the causal relationship
of variables [38–46]. Meanwhile, considering the possible endogeneity problem of the
model and in order to compare the results of similar models, we selected temperature as
an instrumental variable and used the two-stage least squares (2SLS) method to test and
compare the results, which can also prove the robustness of our model [47]. The OLS model
was set as follows.

HPit = α0 + α1PM2.5it + α2GDPit + α3Serviceit + α4Incomeit + α5Industryit
+α6NDVIit + α7Populationit + α8Trafficit + ε1it

(1)

where i indicates the district, and t indicates the year. HP represents house prices. PM2.5
indicates the regional average PM2.5 concentration. The coefficient α1 captures the effect
of PM2.5 on house prices. α0 is the constant term, and ε1it is the error term. α2, α3, . . . , α8
represent the effects of other control variables on house prices, including GDP, Service,
Income, Industry, NDVI, Population and Traffic.

3.2.2. Moderating Effect Models

We further explain the regulating role of education in the relationship between PM2.5
concentration and house prices. A moderating variable, i.e., education, was selected and
added to the basic econometric model. In addition, the interaction term of education and
PM2.5 is calculated as a new explanatory variable in Equation (2).

HPit = β0 + β1PM2.5it + β2GDPit + β3Serviceit + β4Incomeit + β5Industryit
+β6NDVIit + β7Populationit + β8Trafficit + β9Educationit
+β10Educationit × PM2.5it + ε2it

(2)

where Educationit refers to the education level in district i in year t. β0 is the constant term.
β1, β2, . . . , β9 represent the effects of the control variables on house prices. In addition to the
control variables in Equation (1), education was also considered here. Educationit × PM2.5it
is the interaction term of education and PM2.5. β10 indicates the coefficient of the regulatory
effect of education. ε2it is the error term.

∂(HP)it
∂(PM2.5)it

= β1 + β10Educationit (3)

Then, by deriving PM2.5 as Equation (3), the boundary effects of education on the
relationship between PM2.5 and house prices are quantified, whereby β1 represents the
direct effect of PM2.5 on house prices, and β10 indicates the interactions.

3.2.3. Threshold Effect

However, the relationship between PM2.5 and house prices may be nonlinear, and the
regional per capita disposable income level may be an important determinant. Therefore,
we use a threshold effect model and adopt per capita disposable income as a threshold
variable to portray this relationship. The threshold effect model was established as follows:

HPit = γ0 + γ1PM2.5(thr < θ)it + γ2PM2.5(thr > θ)it + γ3GDPit + γ4Serviceit
+γ5Industryit + γ6NDVIit + γ7Populationit + γ8Trafficit
+ε3it

(4)

where thr represents the threshold variable, and θ is the estimated threshold value. γ0
indicates the constant term. γ1 and γ2 represent the influence coefficient of PM2.5 on the
dependent variable house prices under the level of per capita disposable income < θ
and > θ in district i in year t, respectively. γ3, γ4 . . . γ8 represent the effects of the control
variables on house prices. The control variables include GDP, Service, Industry, NDVI,
Population and Traffic. ε3it is the error term. The overall framework for analyzing the
impact of PM2.5 on house prices is shown in Figure 2.
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Figure 2. The analytical framework for the impact of PM2.5 on house prices.

3.2.4. Temporal Trend and Correlation Analysis

To examine PM2.5 pollution characteristics in the BTH region, we used the monthly
deseasonalized temporal trend analysis method, first calculating the monthly anomalous
PM2.5 concentrations at a horizontal resolution of 1 km. Then, the linear PM2.5 trend was
calculated in each pixel based on the OLS fitting method [48]. To evaluate the accuracy
of the temporal trend analysis, a paired-samples T-test was used. In addition, to confirm
the relationship between the control variables and house prices, the Pearson correlation
coefficient (r) was calculated before the construction of the econometric model. The T-test
was selected as the significance level test in this study.

4. Results and Discussion
4.1. Spatiotemporal Characteristics of PM2.5 and House Prices

Figure 3a shows the spatial distribution of annual average house prices across Beijing
from 2009 to 2018. Generally, the mean house price in Beijing is approximately CNY
25,654.34 m−2. However, significant spatial heterogeneities in house prices occur in the
city. The high-level house price areas are mainly concentrated in the central urban districts,
with a mean value of CNY 40,088.39 m−2. Among all the districts, high values were
captured in the XC, DC and HD districts, with house prices of CNY 55,899.58 m−2, CNY
49,026.04 m−2 and CNY 42,665.04 m−2, respectively. In contrast, low-level house price
areas are found in the YQ, MY and PG districts, with values of CNY 11,077.95 m−2, CNY
12,603.18 m−2 and CNY 12,681.34 m−2, respectively. Figure 3 also shows the temporal
variation characteristics of house prices in Beijing during 2009–2018. With the development
of the local economic level and changes in the supply-demand relationship, significant
increasing trends are found in every district. Generally, the average house prices in Beijing
increased by approximately 2.58 times in one decade, and the increasing trend was CNY
3350.0 m−2 per year−1. Similarly, the increasing rates of each district are quite different.
The largest increase was captured in the XC district, with a trend of approximately CNY
7754.7 m−2 per year−1 (an increase of 2.63 times). The YQ district exhibited the lowest
enhancement—the increasing trend was only CNY 1143.9 m−2 per year−1. Nevertheless, in
the YQ district, the house prices in 2018 were still 2.84 times those in 2009. Throughout the
past decade, there have been two periods of accelerated increase: 2009–2010 and 2012–2013,
in which the mean house price growth in Beijing was 47.0% and 35.6%, respectively.
Notably, reflecting the market and policy regulation mechanism, two periods of decrease are
captured, with decreases of 3.0% and 5.7% during 2011–2012 and 2017–2018, respectively.
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Figure 3. Spatiotemporal characteristics of house prices across Beijing from 2009 to 2018. (a) is the
spatial distribution; (b–q) represent the temporal changes in the 16 districts.

Figure 4 shows the mean PM2.5 spatial distributions during the study period in Beijing.
Generally, the annual average PM2.5 concentration is 67.33 ± 15.95 µg m−3, and in nearly all
of the districts, it was higher than 35 µg m−3 (the second level of the ambient air quality stan-
dards in China). The highest average concentration can reach approximately 83.18 µg m−3.
However, the concentration changed obviously on a spatial scale and was extremely high
in the southern regions, especially in the DX district (82.38 ± 14.81 µg m−3), followed by
the TZ district (79.80 ± 15.12 µg m−3). Conversely, low PM2.5 loading was captured in the
northern regions, especially in the YQ, HR and MY districts, with annual averaged PM2.5
concentrations of 49.95 ± 11.64 µg m−3, 51.05 ± 12.12 µg m−3 and 54.16 ± 12.97 µg m−3,
respectively. Significantly, the spatial pattern of PM2.5 concentrations in Beijing is consis-
tent with the topography and distribution of the secondary industry [35]. Figure 4 also
presents the temporal trends of PM2.5 concentrations. Overall, the PM2.5 concentrations
decreased significantly across Beijing during this period, with a trend of −3.79 µg m−3 yr−1

(p < 0.01). An accelerated decreasing trend was captured after 2014 (−5.58 µg m−3 yr−1,
p < 0.01), which reflects the implementation of the Air Pollution Prevention and Control
Action Plan in the Beijing-Tianjin-Hebei region [49]. Regarding the spatial distributions
of temporal trends, most Beijing districts show significant decreasing PM2.5 pollution
(p < 0.05), especially in the southeastern region, i.e., the DX (−4.46 µg m−3 yr−1, p < 0.01),
TZ (−4.64 µg m−3 yr−1, p < 0.01) and CY (−4.41 µg m−3 yr−1, p < 0.01) districts, respec-
tively. In contrast, slight weakening trends were observed in several western areas in
Beijing (e.g., the MTG and CP districts).



Int. J. Environ. Res. Public Health 2022, 19, 8461 8 of 17

Figure 4. Annual averaged concentrations and trends in PM2.5 distributions across Beijing from 2009
to 2018. (a) is the spatial distribution of annual averaged PM2.5; (b) is the spatial distribution of the
temporal trends; (c) is the overall trend of PM2.5 concentration in Beijing.

4.2. Spatial Correlation

In addition, we also calculated the spatial relationship between PM2.5 and HP. Firstly,
we vectorized the geographical map of the Beijing region to obtain latitude and longitude
information. Then, we constructed the regional inverse distance weight matrix as Equation
(5). It assumes that the strength of the spatial effect depends on the distance, and the closer
the spatial effect between spatial units is, the stronger the spatial effect. Wij indicates the
inverse distance weight matrix, and dij is the distance for each district.

Wij =

{
1

dij
2

0
(5)

Then, the spatial autocorrelation analysis was used in this study to verify the spatial
correlation between PM2.5 and house prices in Beijing. The PM2.5 concentration of different
districts may have some spatial correlation for two main reasons. First, PM2.5 in one region
will diffuse to other districts through atmospheric transport. Second, PM2.5 may receive
shocks from other non-environmental factors such as economic and political factors and
thus exhibit spatial correlation. Therefore, the global Moran’s I is used to study the overall
spatial correlation as follows:

I =
∑n

i=1 ∑n
j=1 Wij

(
Xi − X

)(
Xj − X

)
S2 ∑n

i=1 ∑n
j=1 Wij

(6)

where n is the number of districts, and Xi and Xj are the PM2.5 of district i and district
j, respectively. X is the average distance among all districts. Wij is the spatial weight
matrix, and s2 is the variance value of PM2.5. At a certain level of significance, the larger
the absolute value of Moran’s I is, the higher the spatial correlation is. The significance of
Moran’s I was tested as follows:

ZI =
I − E[I]√

V[I]
(7)
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where E[I] is the expectation of Moran’s I and V[I] denotes the standard deviation of the
variable. Meanwhile, the spatial autocorrelation of house prices was also explored (Table 2).
The Moran’s I values are all positive (p < 0.01), which indicates that the PM2.5 distribution
in different areas has a high spatial correlation. The spatial autocorrelation of house prices
also shows the same characteristics. Therefore, it can be seen that PM2.5 and house prices
have a spatial correlation.

Table 2. Results of the Moran test.

Year 2009 2010 2011 2012 2013

PM2.5 0.108 *** 0.081 *** 0.102 *** 0.105 *** 0.130 ***
HP 0.175 *** 0.206 *** 0.216*** 0.208 *** 0.205 ***

Year 2014 2015 2016 2017 2018

PM2.5 0.101 *** 0.068 *** 0.108 *** 0.137 *** 0.138 ***
HP 0.211 *** 0.187 *** 0.203 *** 0.214 *** 0.211 ***

*** indicate p < 0.01.

4.3. Correlation Analysis

Figure 5 shows the r values between house prices and the other variables used. Gener-
ally, the r values between the control variables and house prices are all significant (p < 0.01).
Here, PM2.5 and NDVI show a negative correlation with house prices, with coefficients of
−0.21 (p < 0.01) and −0.52 (p < 0.01), respectively, which proves that there are associations
between house prices and air pollution. Notably, the correlation coefficients among the
control variables are significant, but the values are heterogeneous, indicating that the other
variables exist independently from one another to varying degrees and can be used for
modeling here.

Figure 5. Correlations among house prices, control variables and moderating variables. * and **
indicate significance levels of p less than 0.05 and 0.01, respectively.
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4.4. Impact of PM2.5 on House Prices

Table 3 lists the regression results of the OLS estimation. The results indicate that the
PM2.5 concentration could reduce house prices when other control variables (e.g., GDP,
Service, Income) are controlled, and the significance p is at the 1% level. Specifically, accord-
ing to the estimation coefficient of our econometric model, when the annual mean PM2.5
concentration increases by 1%, the average house prices decrease by 0.541% across Beijing.
As the economy continues to develop rapidly, environmental pollution is becoming increas-
ingly serious, resulting in an increasing marginal cost caused by environmental pollution.
Currently, although rapid economic development at the expense of the environment can
improve the material consumption level of residents, it can also offset the satisfaction of
local residents brought by the increase in economic income. Due to the negative externality
of the environment, house prices will decline. Currently, residents favor residential districts
with better air quality to avoid the health risk of long-term exposure to air pollution. This
phenomenon can be explained by the strong susceptibility of residents to the air pollution
level of their residential area. During our study period, although the PM2.5 concentration
showed a significant decreasing trend, it remained at a high level. This phenomenon
enhances the demand for housing with higher environmental quality by local residents,
which will eventually promote the rise in house prices.

Table 3. The regression results of the OLS estimation, moderating effect and threshold effect.

(1) (2) (3)
OLS Model Moderating Effect Threshold Regression

Variables House Prices House Prices House Prices

PM2.5 −0.541 *** −0.349 **
(−3.20) (−2.14)

GDP 0.128 *** 0.157 *** 1.140 ***
(2.66) (3.04) (4.73)

Service 0.093 0.060 0.235 **
(1.60) (1.02) (1.99)

Income 1.020 *** 1.085 ***
(8.10) (8.63)

Industry 0.101 ** 0.110 *** 0.180 **
(2.53) (2.70) (2.51)

NDVI −0.879 *** −0.784 *** −1.041 ***
(−6.51) (−5.61) (−2.62)

Population −0.212 *** −0.283 *** −0.090
(−4.14) (−4.97) (−1.42)

Traffic −0.036 −0.009 0.228
(−0.62) (−0.13) (1.46)

Education 0.005
(0.12)

Education × PM2.5 0.243 ***
(3.00)

PM2.5 (Income < θ) −0.425 *
(−1.93)

PM2.5 (Income ≥ θ) −0.461 **
(−2.08)

Constant −1.423 −3.086 * −12.622 ***
(−0.83) (−1.83) (−3.11)

Observations 160 160 160
R-squared 0.901 0.906 0.897

***, ** and * indicate p < 0.01, p < 0.05 and p < 0.1.
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The regression results for the other control variables also have practical significance.
Here, significantly positive coefficients are captured for GDP, Income and Industry. Every
1% increase in GDP will lead to an increase in house prices of 0.128% (p < 0.01). This
result illustrates the direct impact of regional economic strength on house prices, which
is consistent with previous studies [50]. Regarding Income, the estimated coefficient is
approximately 1.020 (p < 0.01), indicating that the improvement of per capita disposable
income will significantly increase the pursuit of living quality for local residents. Notably,
a 1% increase in the gross output value of the construction industry will also raise house
prices by approximately 0.101% (p < 0.05). As a megacity in northern China, Beijing,
with its high-quality social and public resources and good employment opportunities,
exerts a strong attraction to the floating population. However, increasing the floating
population could also cause a housing shortage. Moreover, the space available for housing
in the central urban area is limited, resulting in numerous real estate developments in
surrounding areas. Meanwhile, the construction cost of housing is also enhanced. These two
factors will eventually lead to higher home prices. In contrast, significant negative impacts
were captured for NDVI and Population with respect to house prices, with coefficients
of −0.879 (p < 0.01) and −0.212 (p < 0.01), respectively. The areas with high NDVIs are
mainly concentrated in Beijing’s suburban regions, while the house prices in those areas
are generally low, resulting in negative effects. The registered population is closely related
to local house price control policies, e.g., preferential policies for the first house, price
limits and purchase restrictions, which can encourage highly skilled individuals to settle in
the locality.

We also found that the estimated coefficients of Service and Traffic are not significant.
Nevertheless, they still possess practical significance. Following the implementation of a
policy to strengthen livelihoods, the investment in public facilities in all districts has in-
creased, and local residents enjoy good infrastructure and services across Beijing. Therefore,
Service is no longer a factor that must be considered when purchasing a house. Regarding
Traffic, on the one hand, because of the increase in per capita GDP, private car ownership
generally increased across all districts during the study period, resulting in the improve-
ment of the convenience of local resident travel. On the other hand, with the construction
of basic transportation services, public transportation is available in all of Beijing’s districts.
These two items indicated that the traffic situation is no longer the main factor affecting
house prices in the city.

4.5. Moderating Effect of Education

Table 3 also shows the results of the moderating effect of education on the relationship
between PM2.5 and house prices. Here, the estimation coefficient of PM2.5 concentrations
on house prices is negative, with a significance level of p < 0.05. In contrast, the estimation
coefficient interactive item of Education and PM2.5 was significantly positive (p < 0.01),
indicating that educational resources may positively adjust the relationship between house
prices and PM2.5 concentrations. Specifically, local residents will be more inclined to
allocate their purchasing power to housing that includes access to superior educational
resources, resulting in the enhancement of house prices near preferred school districts.
Figure 6 intuitively shows the moderating mechanism of education level on the relationship
between PM2.5 pollution and house prices. Generally, PM2.5 concentrations can cause
decreases in house prices, and the reduction will increase with the aggravation of the PM2.5
pollution level. However, with the moderating influence of educational resources, this
negative effect will be relieved effectively. In addition, the mitigation will be enhanced
with an increase in the level of educational resources. During the study period, the policy
for the next generation of the compulsory education stage (before high school) in Beijing
mainly consisted of students attending schools nearby their homes. This policy not only
strengthens the equity of educational resource allocation but also makes the location
of residential areas the decisive factor in the allocation of basic educational resources.
Currently, education level is a primary development factor for the younger generation.
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Therefore, houses with access to high-level educational resources have become popular
among Beijing homebuyers. Such houses, which can be termed “school district houses”,
eventually result in increased house prices for the residents of the preferred districts.

Figure 6. Moderating effect of education on the impact of PM2.5 on house prices.

4.6. Threshold Regression Result

Significant heterogeneities may occur in the relationship between PM2.5 pollution
and house prices. Therefore, per capita disposable income was selected as a threshold
variable to explain those heterogeneities. Initially, to determine the threshold effect, we first
estimated the threshold condition according to Formula 4 under single, double and triple
thresholds. Then, the joint hypotheses test (F statistic) was used to determine whether
the model parameters were suitable for estimation. Additionally, the significance level p
was calculated according to the bootstrap method [51]. Overall, only a single threshold
effect was statistically significant and reached a significant level. Table 4 shows the test
results of the single threshold regression. Here, the F statistic and relevant critical values
in this table are the results of repeated sampling (1000 times) with the bootstrap method.
The F statistic was significant in the single threshold model, with the p value at the 5%
significance level (p = 0.017). Furthermore, the threshold value of per capita disposable
income θ was calculated to be approximately CNY 101,185.

Table 4. The test results of the threshold regression.

F p RSS MSE Ctrit10 Ctrit5 Ctrit1

Single (θ = 101,185) 14.430 0.017 2.673 0.018 9.368 11.123 14.909

Table 3 shows the results of the threshold regression. Obvious differences in the
impact of PM2.5 pollution on house prices were captured under high- and low-level per
capita disposable income. Generally, the estimation coefficients are both significantly
negative, indicating that PM2.5 pollution will reduce house prices. However, significant
differences occurred in the quantitative estimation. When per capita disposable income is
less than θ (Income < CNY 101,185), for every 1% increase in PM2.5 concentration, house
prices will decrease by 0.425%. Then, with the growth of per capita disposable income
(Income ≥ CNY 101,185), the impact of PM2.5 pollution on house prices will intensify.
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Under such circumstances, 1% PM2.5 pollution aggravation can cause house prices to
decrease by approximately 0.461%. Higher per capita disposable income often means that
residents will spend more on improving their quality of life. High PM2.5 pollution loading
can seriously threaten human health, which can increase the health risks for surrounding
residents. At the same time, the awareness of environmental risks among local residents is
also gradually growing. Therefore, they may spend more money to live in an environment
with lower air pollution loading, resulting in changes in the relationship between PM2.5
concentrations and house prices in Beijing.

4.7. Robustness Test
4.7.1. Endogeneity Problems

Although we attempted to reduce the endogeneity problems by using control variables,
the bias of omitted variables could not be completely avoided, which may lead to deviations
in the estimation results. Therefore, the instrumental variable method was used to overcome
the influence of endogeneity in our econometric model. The annual mean temperature was
selected as the instrumental variable, and a 2SLS model was constructed. The first and
second columns of Table 5 show the results of the 2SLS model. Generally, the instrumental
variable is valid, and its estimation coefficient of the regression is significantly negative in
the first stage (p < 0.05). A temperature increase can lead to an increase in the mixing layer
height, which creates good air-diffusion conditions. With an intensification of atmospheric
flow, air pollution is diluted, eventually resulting in a decrease in PM2.5 concentration. In
addition, the F value is greater than 10 and at the significance level of the 1% confidence
interval, indicating that no weak instrumental variable problem occurred in the model.
Among the results of the two-stage regression, the estimation coefficient of PM2.5 is also
significantly negative (p < 0.05). This outcome means that PM2.5 pollution can still decrease
housing prices even when fully considering the influence of the housing price background
and control variables. Specifically, for every 1% increase in PM2.5 concentration, house
prices will decrease by approximately 0.897% across Beijing. Compared with the results of
the basic econometric model, the estimation coefficient of the 2SLS model is 1.66 times that
of the OLS model, indicating that the OLS model may slightly underestimate the impacts
of PM2.5 concentrations on house prices. In addition, the positive and negative conditions
for the estimated coefficients of the other control variables in the 2SLS model have not
changed, which can also prove the robustness of the results obtained in our study.

Table 5. The results of the robust test.

(1) (2) (3)
Stage1 Stage2 Robust

Variables House Prices House Prices House Prices

PM2.5 −0.897 ** −0.513 ***
(−2.20) (−3.06)

GDP 0.183 *** 0.093 * 0.133 ***
(4.06) (1.71) (2.82)

Service 0.027 0.119 * 0.085
(0.45) (1.89) (1.51)

Income 1.314 *** 0.828 *** 1.040 ***
(13.13) (3.38) (8.31)

Industry 0.091 * 0.131 ** 0.099 **
(1.95) (2.34) (2.49)

NDVI −0.674 *** −1.079 *** −0.866 ***
(−6.46) (−4.38) (−6.21)

Population −0.331 *** −0.152 ** −0.200 ***
(−6.32) (−2.10) (−3.84)
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Table 5. Cont.

(1) (2) (3)
Stage1 Stage2 Robust

Variables House Prices House Prices House Prices

Traffic 0.053 −0.066 −0.047
(0.86) (−0.92) (−0.82)

Temperature −14.255 **
(−2.10)

Constant 73.330 * 2.058 −1.632
(1.92) (0.50) (−0.95)

Observations 160 160 160

Cragg-Donald Wald F statistics 43.320 - -

R-squared 0.898 0.897 0.904
***, ** and * indicate p < 0.01, p < 0.05 and p < 0.1.

4.7.2. Winsorized Robust Measures

Winsorization was also used to further determine the robustness of our results. Because
of the limited sample size, we winsorized 3% of the samples. The third column of Table 5
shows the results of the winsorized robustness test. Overall, our econometric model is
robust, and the positive and negative characteristics of the estimated coefficient of all
controls are consistent with the results of the basic regression. Additionally, the level of
significance did not change. Only the quantification of the estimated coefficients changed,
extremely subtly in our case. In summary, combining the results of the IV method and the
winsorized robustness test, our econometric model is robust. The impact of PM2.5 pollution
on house prices in Beijing was real during the study period.

5. Conclusions

At present, health risks, especially PM2.5 pollution risks, in residential areas have
gradually become the focus of local residents in China. In this study, the panel data for
16 districts in Beijing from 2009 to 2018 were used to investigate the impact of PM2.5 pollu-
tion on house prices from theoretical and empirical perspectives. Through an econometric
model analysis, we found that PM2.5 pollution can curb the increase in house prices in
Beijing. For every 1% increase in annual mean PM2.5 concentration, house prices decrease
by 0.541%. However, this impact can be suppressed by the moderating effects of the level
of education. Moreover, as educational resources increase, this moderating effect will
gradually increase. Meanwhile, the effects of PM2.5 concentration on house prices are also
nonlinear and influenced by disposable income per capita. When per capita disposable
income is less than CNY 101,185, house prices will decrease by 0.425% for every 1% increase
in PM2.5; otherwise, house prices will decrease by 0.460% for every 1% increase in PM2.5.
Significantly, endogeneity problems are solved here by the instrumental variable method,
and the conclusions of the paper are demonstrated to be robust.

6. Policy Suggestions

In this research, we provide a new perspective for understanding the economic conse-
quences of air pollution. Our findings have important policy implications for promoting a
win-win relationship between air pollution control and a stable real estate market across
China. Based on our results, we offer several policy suggestions. First, the government
should further optimize the environmental governance system and promote interregional
collaborative governance. PM2.5 pollutants usually exert spillover effects. Therefore, it
is necessary to establish an interregional joint prevention and control system to decrease
air pollution. Second, local governments should establish a house price control system to
strictly control the inefficient expansion of urbanization. Additionally, housing planning
should be strengthened to promote the sustainable development of a livable environment.
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Through the rationalized control of house prices and the optimization of the spatial layout,
the impact of air pollution on house prices can be reduced, and the win-win goal of green
development and house price regulation can be achieved. Finally, the local government
should balance educational resources among all districts of the city. The matching degree
of the supply and demand of such resources should be improved, which can effectively
reduce the spatial difference of house prices. These suggestions will contribute to achiev-
ing the high-quality development goals of balancing the housing price market, reducing
resident health risks, reasonably improving the education level of the next generation and
ameliorating urban planning.
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