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Almeida

Keywords:
PM2.5

MAIAC
1 km resolution
LME model
Industrial structure
* Corresponding author. College of Global Change
Beijing Normal University, Beijing, China.
** Corresponding author.

E-mail addresses: jingzhang@bnu.edu.cn (J. Z
(J. Wei).

https://doi.org/10.1016/j.jclepro.2020.123742
0959-6526/© 2020 Elsevier Ltd. All rights reserved.
a b s t r a c t

The economy has developed rapidly in China during recent decades, especially in the Beijing-Tianjin-
Hebei (BTH) region. Environmental problems have thus become increasingly prominent, particularly
the presence of fine particulate matter with aerodynamic diameters �2.5 mm (PM2.5). High-quality and
high-resolution PM2.5 data is urgently needed. Therefore, based on the newly released Moderate Reso-
lution Imaging Spectroradiometer (MODIS) Multi-Angle Implementation of Atmospheric Correction
(MAIAC) aerosol optical depth products, a high-quality PM2.5 data set with a high spatial resolution of
1 km is first reconstructed covering 2000 to 2018 in the BTH region using the linear mixed effect (LME)
model. This model shows an excellent performance with a high cross-validation coefficient of deter-
mination (R2) of 0.85, a small root mean square error of 21.49 mg/m3, and a small mean absolute error of
15.26 mg/m3 from 2013 to 2018. It also has strong predictive power in estimating historical PM2.5 con-
centrations, with a monthly R2 equal to 0.72. There was a significant decreasing trend (i.e., �1.53 mg/m3,
p < 0.01) in PM2.5 concentrations during the last two decades, and the largest downward trend
(i.e., �6.83 mg/m3, p < 0.01) occurred from 2013 to 2018. In addition, the response of PM2.5 to the in-
dustrial structure is also examined using the vector autoregression model. In general, both the secondary
industry and tertiary industry show significant influences and can contribute approximately 3.8% and
9.8% to the PM2.5 pollution in the BTH region, respectively. This suggests that further industrial structural
adjustment, e.g., clean energy production, or low-carbon technology development, is required for the
future prevention and control of air pollution and the sustainable development of the economy.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, fine particulate matter with aerodynamic di-
ameters � 2.5 mm (PM2.5) has become a national crisis in most
developing countries, especially in China. Epidemiological studies
have indicated that PM2.5 is one of the major causes of cancer, heart
and respiratory diseases (Song et al., 2019). In addition, approxi-
mately 0.7e2.2 million people die in China annually from problems
related to air pollution (Rohde and Muller, 2015). The United Na-
tions General Assembly proposed sustainable development goals
(SDGs) as important health indicators related to air pollution, of
and Earth System Science,
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which the values were extremely low in China in 2015 (Gupta and
Vegelin, 2016). The Beijing-Tianjin-Hebei (BTH) region, which is
one of the most important Chinese city clusters, has experienced
rapid economic development, which has been accompanied by
increasing air pollution, with severe fine particulate pollution epi-
sodes occurring over the recent decades (Bei et al., 2017; Xue et al.,
2020; Tian et al., 2019). However, there were no real-time PM2.5
monitoring stations in China before 2013, and the lack of historical
PM2.5 measurement records have limited studies of the air pollu-
tion impact on environmental economics and epidemiology.

Satellite remote sensing has been widely used in deriving
ground-level PM2.5 concentrations from aerosol optical depth
(AOD) products due to their highly positive correlations (Wei et al.,
2019a; Xin et al., 2016). There are numerous aerosol products with
different spatiotemporal resolutions generated from multi-source
satellites, including the Moderate-resolution Imaging Spectroradi-
ometer (MODIS, Lee et al., 2011), Multi-angle Imaging
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Fig. 1. Spatial distribution of the PM2.5 monitoring and Aerosol Robotic Network
(AERONET) sites in the Beijing-Tianjin-Hebei region. The background map represents
the land use cover.
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SpectroRadiometer (MISR, You et al., 2015), Visible Infrared Imag-
ing Radiometer (VIIRS, Yao et al., 2019), and Himawari-8 (Zang
et al., 2018). Among them, MODIS AOD products have been popu-
larly adopted due to the satellite’s mature aerosol retrieval algo-
rithms, e.g., Dark Target (DT) and Deep Blue (DB), and long-term
observations. However, these products are provided at low spatial
resolutions of greater than 3 km and perform differently between
global and regional areas (Wei et al., 2018; Wei et al., 2019c).

Three main approaches, including the physical, statistical and
artificial intelligence models, have beenwidely used in establishing
the PM2.5-AOD relationships. The physical model is used to esti-
mate PM2.5 concentrations by correcting the humidity and height of
the AOD but yields a poor performance due to its difficulty in
explaining their complex relationships (Zhang and Li, 2015). An
increasing number of statistical regression models, e.g., the
geographically weighted regression (GWR, Song et al., 2014) model,
the geographically and temporally weighted regression (GTWR, He
and Huang, 2018) model, the linear mixed effect (LME, Ma et al.,
2016) model, and the two-stage model (Ma et al., 2015), have
been adopted to improve PM2.5 estimates by introducing more
potential influencing factors. These methods are fast and easy to
implement and are often used for small- and medium-sized areas.
In recent years, artificial intelligence models, e.g., random forest
(Wei et al., 2019a), extremely randomized trees (Wei et al., 2019b;
Wei et al., 2020), and deep brief networks (Li et al., 2017), have been
applied in PM2.5 estimates and achieved high accuracy due to their
strong data mining ability. However, they require a large number of
training samples and are thus often used for large-scale areas.

There are also many studies exploring the potential impact of
PM2.5 pollution from both natural and human aspects (Yang et al.,
2018; Zhang et al., 2018b; Wu et al., 2018). Meteorological factors
and topography show large influences on PM2.5 pollution from the
local to national scales in China, exhibiting significant seasonal
variations (Yang et al., 2017). However, PM2.5 pollution appears to
be closely related to socio-economic factors. Zhang et al. (2018b)
pointed out that air quality policies are mainly determined by the
economic development in most provinces in China. In addition, the
economic/population scale, urbanization level, industrialization
level, and energy utilization efficiency have been proven to be the
main driving forces behind the increasing PM2.5 concentrations
(Luo et al., 2018). Moreover, the importance of socio-economic
factors to PM2.5 pollution has been investigated using the Sto-
chastic Impacts by Regression on Population Affluence and Tech-
nology model, and secondary industry shows the greatest impact.
Furthermore, changes in the industrial structure also determine the
diversity of CO2 emissions and water resource constraints in the
BTH region, causing indirect effects on air pollution (Chen et al.,
2019; Ding et al., 2019).

Over the years, although there has been an increasing number of
studies on spatiotemporal PM2.5 estimations and variations from
the local to national scales in China, these studies have mainly
focused on developing new methods to improve the accuracy of
PM2.5 estimates for years with sufficient PM2.5 ground monitoring
stations since 2013. Therefore, the generated PM2.5 data sets cover
short periods of one or a couple of years, and few studies have
examined the long-term historical PM2.5 variations in China (Ma
et al., 2015; Xue et al., 2020). Additionally, the AOD products
adopted for the PM2.5 estimations have coarse spatial resolutions
and show large uncertainties over bright surfaces, especially for
urban areas (Wei et al., 2018, 2019d). Therefore, these data sets
always yield poor-quality data at low spatial resolutions, limiting
their applications in medium- and small-scale areas. Those also
limit the study of the influence and response mechanisms of the
economy, health and other factors affecting PM2.5 pollution, espe-
cially for main urban agglomerations (e.g., the BTH region) in China.
Therefore, the purpose of this study is to reconstruct a long-time
series and high-spatial-resolution PM2.5 data set in the BTH region.
For this purpose, the newly released MAIAC AOD products with a
1 km spatial resolution combined with meteorological and land
cover data are employed, and the longest-period (2000e2018) and
highest-resolution (1 km) PM2.5 data set is first generated using the
LME model. Then, the historical spatial distributions and temporal
variations in PM2.5 pollution are fully investigated under the Five-
Year Plans (FYPs) implemented by the Chinese government. In
addition, the dynamic relationships and interactions between the
industrial structure and PM2.5 pollution are also explored in the
BTH region using the vector auto regression (VAR) model. Our
study can provide measures and suggestions for the local govern-
ment for future air pollution prevention and control. Section 2
describes the study and data sources and integration. Section 3
introduces the PM2.5 estimation method, section 4 presents the
validation of PM2.5 estimates and the long-term spatiotemporal
variations, and section 5 investigates the effects of industrial
structure on PM2.5 pollution in the BTH region. Section 6 provides
some policy suggestions, and section 7 gives the summary and
conclusions.
2. Materials

2.1. Study area

One of the main urban agglomerations in China, i.e., BTH
(113.45�e119.85� E, 36.04�e42.62� N), was selected, which includes
Beijing, Tianjin and 11 cities in Hebei province. This region covers
218,000 km2 with a total population of 110 million inhabitants. In
2011, the BTH region was designated as the Capital Economic Circle
by the National Development and Reform Commission, and a high
GDP level of 7461.26 billion yuan was attained, accounting for 10%
of the total GDP of China. Fig.1 shows the geographical location and
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land use cover of the BTH region in China. Urban areas and crop-
lands are the two main land use types in this area, occupying
approximately 46% and 13%, respectively, of the total area.
Remarkably, industrial and residential pollutant emissions are the
main sources of PM2.5 pollution in this region, with only 30%
transferred from surrounding areas affected by meteorological
conditions (Li et al., 2015). Moreover, a wide range of emissions
sources produce a variety of PM2.5 components, including toxic
heavy metals (e.g., arsenic, cadmium, and chromium), secondary
inorganic ions (SO42�, NO3�, and NH4þ), organic carbon (OC) and
elemental carbon (EC). Thus, serious air pollution easily occurs,
especially in winter (Gao et al., 2018).

2.2. Data sources

2.2.1. PM2.5 ground measurements
Records of hourly PM2.5 in situ measurements for 2013e2018

from 79 monitoring stations (Fig. 1) in the BTH region are collected.
These monitoring stations are evenly distributed and cover almost
all cities in the BTH region. Values that remained constant for three
consecutive hours due to instrument failure were removed first,
and the daily PM2.5 values were averaged from all available hourly
PM2.5 observations during the daytime for each day in our study.

2.2.2. MODIS MAIAC AOD products
Both Terra and Aqua MODIS released new Collection 6 1 km

MAIAC AOD products (Lyapustin et al., 2018) from 2000 to 2018
covering the BTH region, which were obtained to estimate the
historical PM2.5 records. First, Terra and Aqua daily MAIAC AOD
retrievals at 550 nm are combined to increase the spatial coverage
using established linear transformation models (Wei et al., 2020).
Real-time AODmeasurements from seven available Aerosol Robotic
Network (AERONET) sites (Fig. 1) in the BTH region were chosen to
validate the reliability of the MAIAC AOD retrievals using the
spatiotemporal matching approach (Wei et al., 2018, 2019c). The
results illustrated that the MAIAC AOD retrievals are highly
consistent with the AERONETAODs (Fig. S1), with a notable slope of
0.96 and a high R2 value of 0.89. The root mean square error (RMSE)
and mean absolute error (MAE) are 0.21 and 0.11, respectively.

2.2.3. Auxiliary data
To further determine the relationship between AOD and PM2.5,

meteorological data was employed. In this study, eight meteoro-
logical variables, including the boundary layer height (BLH), evap-
oration (ET), total precipitation (PRE), relative humidity (RH),
surface pressure (SP), 2 m temperature (TEM), wind direction (WD)
and wind speed (WS), at a spatial resolution of 0.125 � � 0.125 �

were collected from ERA-Interim atmospheric reanalysis products
(Dee et al., 2011). Moreover, the MODIS monthly 1 km-resolution
normalized difference vegetation index (NDVI) product was also
used to reflect the vegetation conditions on the land surface. In
addition, to ensure spatial and temporal resolution consistency
among all variables, all auxiliary data were interpolated to a uni-
form scale of 1 km for each day using the bilinear interpolation
method.

2.2.4. Socioeconomic data
The provincial quarterly growth values of the secondary in-

dustry (SI) and tertiary industry (TI) in the BTH region from 2000 to
2017 were collected. The SI and TI output data were collected from
the National Bureau of Statistics (NBS) database. Moreover, the ratio
of PM2.5 to GDP (GPM2.5) was used to represent the changes in the
PM2.5 concentration caused by economic growth, with the same
spatial and temporal resolution as those of the SI and TI. GDP data
were obtained from the Statistical Yearbook pertaining to the BTH
region.

3. Methodology

3.1. Model development

In this study, the LME model was selected to determine the
relationships between the surface PM2.5 measurements and all
independent variables for each year from 2013 to 2018, separately.
Then, the 2013 LME model was employed to predict the historical
PM2.5 concentrations from 2000 to 2012. The LME model includes
fixed and random effects that suitably explained the spatiotem-
poral variations between the PM2.5 concentration and the other
independent variables, which can be expressed as follows:

PM2:5jt ¼ðb0 þb0t þ b0m þ b0sÞ þ ðb1 þ b1tÞ � AODjt þ ðb2 þb2tÞ
� BLHjt þ ðb3 þ b3tÞ � RHjt þ ðb4 þ b4mÞ � NDVIjm þ ðb5 þb5sÞ
� ETjt þ ðb6 þ b6sÞ � PREjt þ ðb7 þ b7sÞ � SPjt þ ðb8 þ b8sÞ
� TEMjt þ ðb9 þ b9sÞ �WDjt þ ðb10 þ b10sÞ �WSjt

þ ε1jtðb0t ;b1t ; b2t ; b3tÞ
� N½ð0;0;0;0Þ;j1� þ ε2jmðb0m;b4mÞ
� N½ð0Þ;j2� þ ε3jsðb5s;b6s; b7s;b8s; b9s; b10sÞ
� N½ð0;0;0;0;0;0Þ;j3�

[1]

where PM2:5jt is the ground-based measured PM2.5 concentration
in grid j on day t, b0 is the fixed intercept, and b0t, b0m, and b0s are
the daily, monthly and seasonal random intercepts, respectively.
AODjt, BLHjt, RHjt, ETjt, PREjt, SPjt, TEMjt, WDjt and WSjt denote the
appropriate variable factors in grid j on day t. In addition, NDVIjm is
the NDVI in grid j for month m. b1-b10 represent the fixed slopes of
each independent variable, and b1t-b3t, b4m, and b5s-b10s are the
daily, monthly, and seasonal random slopes, respectively, while ε1jt,
ε2jm and ε3js are the error terms at the daily, monthly and seasonal
scales in grid j. N indicates the normal distribution for all variables,
and j1, j2 and j3 are the variance-covariance matrices for all
random effects at the daily, monthly and seasonal levels,
respectively.

In this study, the commonly used sample-based 10-fold cross
validation (CV) approach is selected to evaluate the goodness of fit
and prediction performance of the LME model (Kohavi, 1995). In
addition, several statistical indicators, e.g., the linear regression
equation, coefficient of determination R2, RMSE, and MAE, are
calculated to represent the model accuracy and estimate the
uncertainty.

3.2. Data analysis method

To explore the temporal trends of air pollution, the monthly
PM2.5 values were first deseasonalized by calculating the monthly
anomalies and then used to calculate the linear trends. An anom-
alous PM2.5 concentration was defined as the difference between
themonthly mean value in one year and themonthly PM2.5 average
over the whole period. Then the ordinary least squares fitting
method was selected to calculate the linear PM2.5 trend (Wei et al.,
2019e). Moreover, the paired-samples T-test was selected to eval-
uate the statistical significance of the trends. Noticeably, the
spurious regression phenomenon has been widely encountered in
traditional long time-series economic studies (Granger and
Newbold, 1974), leading to contradictory or incorrect results.

To avoid such issues, the unit root test should be selected to
evaluate the stationarity and integration of all socioeconomic data.
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There are three specific tests that have been widely applied to test
the unit root, including the Augmented Dickey-Fuller (ADF) test,
the Phillips-Perron (PP) test, and the Dickey-Fuller (DF) test. Among
them, the ADF test has been proven to bemore effective and robust,
especially for data with a small sample size. However, the sum-of-
covariance for long-term variation is required for both the PP and
DF tests (Cavaliere and Xu, 2014). Thus, the ADF test was selected
for the unit root test in this study.

In this study, the vector auto regression (VAR) model was
adopted to predict and assess the strength and duration of the
dynamic interactions among GPM2.5, SI and TI. The VAR model is a
multivariate model constructed with endogenous variables and
lagged values of the endogenous variables. However, the ADF test
mainly expresses the long-term equilibrium relationship among all
variables, and sequential causality may exist. Therefore, before
building this model, the Granger causality test was selected to
determine the causal relationship with 1e4 lags (Granger, 1969;
Sims, 1972).

In addition, the sequential modified linear regression test sta-
tistic (LR), final prediction error (FPE), Akaike information criterion
(AIC), Schwarz criterion (SC) and Hannan-Quinn information cri-
terion (HQIC) were selected to determine the lag order of themodel
(Lütkepohl, 1985; Hurvich and Tsai, 1993). In this study, the impulse
response functionwas applied to explain the dynamic effects of the
independent variables, which can be expressed as:

GPM2:5 ¼ a11GPM2:5t－1 þ a12GPM2:5t－2 þ a13GPM2:5t－3

þ a14GPM2:5t－4 þ b11SIt－1 þ b12SIt－2 þ b13SIt－3 þ b14SIt－4

þ c11TIt－1 þ c12TIt－2 þ c13TIt－3 þ c14TIt－4 þ u1
[2]

SI¼ a21GPM2:5t－1 þ a22GPM2:5t－2 þ a23GPM2:5t－3

þ a24GPM2:5t－4 þ b21SIt－1 þ b22SIt－2 þ b23SIt－3 þ b24SIt－4

þ c21TIt－1 þ c22TIt－2 þ c23TIt－3 þ c24TIt－4 þ u2
[3]

TI¼ a31GPM2:5t－1 þ a32GPM2:5t－2 þ a33GPM2:5t－3

þ a34GPM2:5t－4 þ b31SIt－1 þ b32SIt－2 þ b33SIt－3 þ b34SIt－4

þ c31TIt－1 þ c32TIt－2 þ c33TIt－3 þ c34TIt－4 þ u3
[4]

where aij, bij, and cij (i¼ 1, 2, 3; j¼ 1, 2, 3, 4) are pending parameters,
GPM2.5t-j, SIt-j and TIt-j (t ¼ 1, 2, …, 72) are endogenous variables at
lag j, and ui is the disturbance. The mathematical expectation of the
disturbance terms is 0. Moreover, variance decomposition was
performed to examine the GPM2.5, SI and TI variations.
4. Results and discussion

4.1. Correlation and collinearity diagnosis

The MAIAC AOD products were first validated against AERONET
AOD ground measurements (Wei et al., 2019c) at 18 monitoring
stations (marked as red dots in Fig. 1) from 2015 to 2018 in China
(Fig. S1). For this, there were a total of 4251 collected matchups
between MAIAC and AERONET AODs using the spatiotemporal
matching approaches (Wei et al., 2019c,d) across China. The results
show that the MAIAC AODs agree well with AERONET AODs
(R ¼ 0.961) with an overall high accuracy (i.e., MAE ¼ 0.068,
RMSE ¼ 0.121). About 84% of the matchups fall within the MODIS
expected errors (EE, ± (0.05 þ 15%)) at the national scale. Besides
vegetated surfaces, e.g., cropland and grassland, the MAIAC algo-
rithm shows considerable accuracy, with about 85% of the
matchups falling within the EE envelope over heterogeneous urban
surfaces. Compared to our previous studies, the MAIAC AOD
products are much better and less biased than thewidely used Dark
Target and Deep Blue AOD products, especially for urban areas (Wei
et al., 2019a, e). Thus, the MAIAC products at a higher 1 km reso-
lution, rather than DT and DB AOD products at coarser 3e10 km
resolutions, were selected, which can lead to more accurate and
detailed PM2.5 estimations.

Before model building, the potential relationships among the
PM2.5 measurements and all independent variables were calculated
(Table S1). Except for PRE, all the other variables were significantly
correlated with the PM2.5 measurements at the 99% confidence
level (p < 0.01) for each year in China. Among all the variables,
positive effects of the AOD, ET, RH, and SP on the PM2.5 concen-
tration existed, whereas the remaining variables had negative ef-
fects. In general, the AOD exhibited the highest correlationwith the
PM2.5 concentration (R ¼ 0.48e0.57), while the PRE had the lowest
correlation (R ¼ �0.021 to �0.07).

In addition, to avoid errors due to potential multicollinearity
among the large number of independent variables, the variance
inflation factor (VIF) was calculated in this study (Table S2). The
results indicated that no multicollinearity issue existed among the
selected variables with VIF values < 10 (Neter et al., 1996). The
descriptive statistics for all variables are also provided (Table S3),
and the annual mean PM2.5 concentration was 67.65 ± 60.67 mg/m3

from 2013 to 2018 in the BTH region, China, which is much higher
than the limits defined in the National Ambient Air Quality Stan-
dard (i.e., PM2.5 ¼ 35 mg/m3).

4.2. Model fitting and validation

Fig. 2 shows the 10-fold cross-validation results in the BTH re-
gion for each year from 2013 to 2018. In addition, the model-fitted
results are also depicted in Fig. S2. The results illustrated that the
LME model exhibited an excellent performance in capturing the
daily PM2.5 concentration, with model-fitting R2 values of
0.83e0.91 andmodel-CV R2 values of 0.80e0.89, indicating that the
PM2.5 estimates were neither dramatically under- nor over-fitted.
Among the different years, the LME model had the best perfor-
mance in 2018, with the highest CV-R2 value of 0.89 and the
smallest RMSE and MAE values of 13.92 and 9.83 mg/m3, respec-
tively, between the measured and estimated PM2.5 in the BTH re-
gion. This was mainly due to the low-level PM2.5 pollution, with
approximately 89% of the data samples < 100 mg/m3. In contrast,
the worst performance was observed in 2014, with the lowest CV-
R2 value and largest estimation uncertainties (i.e., RMSE ¼ 28.4 mg/
m3 and MAE ¼ 20.41 mg/m3). The primary reason is that the air
pollution was more severe in this year, with more than 27% of the
data samples > 100 mg/m3, and relatively discrete data samples may
have increased the difficulty of model fitting (Wei et al., 2019b). In
general, the LMEmodel is robust and can suitably estimate the daily
PM2.5 concentrations (e.g., R2 > 0.80, RMSE < 29 mg/m3, and
MAE < 21 mg/m3) in the BTH region.

Then, the LME-based PM2.5-AOD relationships were used to
estimate the historical PM2.5 records for 2000e2012 in the BTH
region. However, there were no PM2.5 measurements before 2013;
thus, to test the predictive power of the LME model, the daily PM2.5
concentrations in 2013 were estimated using the LME model
established in 2014, and the estimations of PM2.5 were validated
against the PM2.5 observations in 2013. The results indicate that the
LME model can correctly capture 41% of the historical daily PM2.5
concentrations. More importantly, the monthly and seasonal PM2.5
estimates were highly consistent with the surface measurements,



Fig. 2. Density scatterplots of the 10-fold cross-validation results for the LME model from 2013 to 2018 in the Beijing-Tianjin-Hebei region, China. The red and black lines indicate
the regression fitting and 1:1 lines, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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with high R2 values of 0.72 and 0.80, small RMSE values of 18.75
and 15.57 mg/m3, and small MAE values of 17.96 and 14.90 mg/m3,
respectively. These findings suggest that the LME model has a good
prediction ability and can be used to reconstruct the historical
PM2.5 records in the study area.
4.3. Spatial distribution from 2000 to 2018

Fig. 3 shows the spatial distribution of the seasonal average
PM2.5 concentrations in the BTH region from 2000 to 2018. The
mean PM2.5 concentrations were 52.76, 49.09, 58.41 and 82.72 mg/
m3 for spring, summer, autumn and winter, respectively. The
highest PM2.5 concentration occurred in winter and was 36.22%,
40.7% and 29.4% higher than those in the other three seasons. Crop
residue burning and fossil fuel combustion are the main reasons for
the increase in PM2.5, especially during the heating period (Zhang
et al., 2017). In all four seasons, the northern region of BTH is
characterized by low PM2.5 levels. The main reason for this result is
that there are fewer human activities in this area, and themain land
use types are forests and grasslands. In contrast, high PM2.5 levels
occurred in the southern BTH region, where most cities of Hebei
province are located. A high urbanization level, massive industrial
production and sparse vegetation coverage resulted in the high
PM2.5 concentrations. Therefore, over the whole study period, the
spatial distribution of PM2.5 is closely associated with human ac-
tivities and land cover. Topography can also play a crucial role in
affecting the spatial distribution in PM2.5 concentrations associated
with meteorology, wherein high-level PM2.5 concentrations are
prone to occur over the southeast plain areas, while low PM2.5
concentrations are mainly observed in northwest mountainous
regions (Wang et al., 2018). However, significant PM2.5 spatial dis-
tribution distinctions existed in BTH during different time intervals.

Four time periods were selected for PM2.5 spatial variation
analysis according to the Five-Year Plans (FYPs) in China. The FYP is
an important part of the national economic plan of China. During
the 11th FYP (2006e2010), primary industrial air pollutant emis-
sions, e.g., SO2, NO2, smoke, and dust, were reduced in the BTH
region due to the implemented structural management measures.
To mitigate air pollution problems, a transformation of energy
production and utilization was carried out during the 12th FYP
(2011e2015) in China. Additionally, the government has continued
to accelerate the development of strategic emerging industries in
the 13th FYP (2016e2020) (Zhang et al., 2018a). Fig. 4 shows the
spatial distributions of the annual average PM2.5 concentrations
from 2000 to 2005 (9th and 10th FYPs), 2006e2010 (11th FYP),
2011e2015 (12th FYP) and 2016e2018 (13th FYP). Similar to the
seasonal spatial distributions, the southern BTH region was more
polluted than the northern region, with higher PM2.5 concentra-
tions in all time periods. The highest PM2.5 concentration was
recorded in the 11th FYP period, with the mean concentration of
85.14 mg/m3 across the BTH region. In this period, the BTH metro-
politan area was established to develop the economy. This resulted
in serious air pollution problems, and the annual PM2.5 concen-
tration in all BTH areas was higher than 35 mg/m3. In contrast, the
cleanest air conditions occurred in the 13th FYP, with the annual
mean PM2.5 concentration in 29.78% of the area being lower than



Fig. 3. Spatial distribution of the seasonal mean PM2.5 concentrations from 2000 to
2018 in the BTH region.

Fig. 4. Spatial distribution of the annual mean PM2.5 concentration in the BTH region
during the periods of (a) 2000e2005, (b) 2006e2010, (c) 2011e2015, and (d)
2016e2018.
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35 mg/m3, and the mean PM2.5 concentration was 49.79 mg/m3 in
the BTH region. This phenomenon was mainly attributed to the
rigorously implemented coordinated environmental development
(Zhang et al., 2016). Moreover, the foundation for development was
also built through environmental constraints in the 13th FYP. The
mean PM2.5 concentration was 71.90 mg/m3 in the 12th FYP, which
was much lower than that in the 11th FYP. Since 2011, the BTH re-
gion has been actively transforming its industrial structure and
rigorously promoting the use of clean energy. Especially in
September 2013, the action plan for the prevention and control of
air pollution was launched and implemented by the China State
Council. This has laid a solid foundation for air pollution control in
the BTH region.

4.4. Long-term variations from 2000 to 2018

Fig. 5 shows the deseasonalized monthly anomaly trends of the
PM2.5 concentration from 2000 to 2018 in BTH and its main dis-
tricts. There was a significant downward trend during this period,
with the area of decrease (trend < 0; p < 0.05) accounting for 99.9%
of the entire BTH region (Fig. 5e). The most substantial declines
occurred in the eastern and southern areas, including Qinhuang-
dao, Tangshan, Tianjin, Cangzhou and Handan. In addition, the
decreasing trends from 2000 to 2018 were calculated for the whole
BTH region (�1.53 mg/m3/year), Beijing (�1.58 mg/m3/year), Tianjin
(�1.85 mg/m3/year) and Hebei province (�1.50 mg/m3/year). The
decreasing trends were all significant (p < 0.05). The temporal
variation in PM2.5 across the BTH region can be divided into three-
time intervals, i.e., increasing (2000e2007), stable (2008e2012)
and decreasing (2013e2018) phases. In the first phase, with the
successful bid of the 28th Olympic Games, substantial economic
production activities were carried out across the whole BTH region.
Especially in Tianjin, the increasing PM2.5 trend was 2.84 mg/m3/
year, which was 1.97 and 1.71 times as much as those in Beijing and
Hebei province. The increasing trends were all significant at the
99% (p < 0.01) confidence level.

In the second phase, although the PM2.5 concentration showed a
decreasing trend (�1.60 mg/m3/year) across the BTH region, sta-
tistical significance was not achieved (p > 0.1). Among the main
districts, the trends of Beijing and Tianjin were significant, with
downward trends of �3.02 mg/m3/year (p < 0.05) and �3.47 mg/m3/
year (p < 0.05), respectively. However, the downward trendwas not
significant in Hebei province at the 90% (p > 0.1) confidence level.
The main reason is that the secondary industry accounts for a high
proportion of production in Hebei province, and a large number of
industrial parks have been established (Li et al., 2018). Although the
local government has implemented air pollution control measures,
the downward trend is not significant. In the third phase, due to the
implementation of environmental control policies and the
enhancement of collaborative governance, the PM2.5 concentration
decreased rapidly. The trend in Hebei province decreased most
notably, at �7.02 mg/m3 per year (p < 0.01). In addition, the
downtrends were �5.33 (p < 0.01), �6.31 (p < 0.01) and �6.83 mg/
m3/year (p < 0.01) in Beijing, Tianjin and the whole BTH region,
respectively. The temporal variations in PM2.5 indicated that the air
quality in BTH has improved dramatically over the years.

5. Response of PM2.5 to the industrial structure

5.1. Industrial emissions intensity

The industrial emissions intensity, i.e., the ratio of the industrial
emissions to the GDP, can indicate the industrial technology level.



Fig. 5. Spatial distribution (e) of the PM2.5 trend and time series of the monthly PM2.5 anomalies in the (a) BTH region, (b) Beijing, (c) Tianjin, and (d) Hebei province.

Fig. 6. The industrial emissions intensities in the BTH region from 2000 to 2017.

Fig. 7. The proportions of the secondary and tertiary industries in GDP in (a) Beijing,
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Fig. 6 shows the industrial emissions intensity in the BTH region
from 2000 to 2017. An accelerated downward trend is observed in
the BTH region. The wide use of desulfurization equipment and the
effective management of smoke plumes in factories in those years
are the reasons for the decline in the emissions intensity (Shi et al.,
2017). In general, the decreasing trends of the SO2 and smoke-dust
emissions intensities are synchronous, and the changes in the
smoke-dust emissions intensity were slightly more significant than
those in the SO2 emissions intensity, with an annual average change
ratio of 16.44% (the ratio was 14.97% for the SO2 emissions in-
tensity). Notably, the fluctuation was captured from 2011 to 2014.
The main cause of this phenomenon was the intensive economic
development during this period in BTH. Due to the rapidly
increasing technological innovations in BTH, the oscillation was
slight. Although the industrial exhaust emission intensity has
progressively declined, the changes in PM2.5 fluctuated in BTH,
especially from 2000 to 2013. Therefore, the industrial structure
changes also need to be considered.
5.2. Industrial structure in the GDP and ADF tests

Fig. 7 shows the SI and TI proportions in the GDP of the BTH
region from 2000 to 2017. Among all BTH regions, Beijing had the
largest TI proportion and smallest SI proportion in the GDP, with
mean values of 71.47% and 25.22%, respectively, from 2000 to 2017.
The TI ratios in the GDP have always been higher than the SI ratios.
The opposite situation was observed in Hebei provincedthe TI
proportionwas smaller than the SI proportion in the GDP. Themean
TI and SI proportions were 35.56% and 51.28%, respectively. For
Tianjin, the SI and TI proportions in the GDP were similar in most
years. From 2000 to 2014, the SI ratio was higher than the TI ratio in
the GDP. Then, with the development of science and technology in
(b) Tianjin, (c) Hebei and (d) the BTH region from 2000 to 2017.
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this area, the TI proportion exceeded the SI proportion in the GDP,
reaching 58.2% in 2017. A striking dividing point was observed in
the BTH region in 2008. After 2008, the TI proportion was signifi-
cantly larger than the SI proportion in the GDP. This was most likely
due to the Beijing 2008 Olympic Games, transforming the industrial
structure. Although the SI and TI proportions in the GDP were
different across the BTH region, the trends of those proportions
remained consistent in the different areas. An upward trend was
observed for the TI proportion in GDP, with trends of 1.34%, 0.63%,
0.48% and 0.88% for Beijing, Tianjin, Hebei and the whole BTH re-
gion, respectively. The confidence coefficient p values were all less
than 0.01. For the SI ratio in the GDP, a significant downward trend
existed in BTH, with a trend of �0.77% (p < 0.01).

In addition, the relationships between the PM2.5 concentrations
and the SI and TI proportions in GDPwere calculated (Table S4). The
results show that the relationships between the PM2.5 concentra-
tion and industrial structure ratio are overall inconsistent in the
BTH region. Tianjin showed the closest relationship, with correla-
tion coefficients R of 0.92 (p < 0.01) and �0.93 (p < 0.01) for SI and
TI, respectively. In addition, significant positive and negative effects
on the PM2.5 concentration (p < 0.01) caused by SI and TI were
observed in Hebei. However, the relationships were not significant
in Beijing (p > 0.05), suggesting the influence of other factors.
Nevertheless, the industrial structure ratio plays an important role
in the PM2.5 concentration across the BTH region, with RSI ¼ 0.84
(p < 0.01) and RTI ¼�0.72 (p < 0.01). Therefore, the VARmodel was
used in this study to analyze the dynamic response of PM2.5 to the
industrial structure in BTH. Initially, the ADF test was used in this
paper to avoid spurious regression (Table S5). The significance
levels were 90%, 99% and 99% for SI, TI and GPM2.5, respectively.
This indicates that the quarterly SI, TI and GPM2.5 were all sta-
tionary, and those three variables can be used to build the VAR
model.

5.3. Results of the VAR model

5.3.1. Model stability
Table 1 lists the results of the five criteria, and the suitable lag

order for each criterion is marked in this table. Four of the five
criteria, LR, FPEM AIC and HQIC, indicated that a lag order of 4 was
optimal for this VAR model. In contrast, only SC indicated that a lag
order of 2 was optimal. In addition, this also indicated that the time
series of the variables met the requirements of establishing the VAR
model. Therefore, the VAR (4) model was constructed in this work.
In addition, a robustness test was also performed on this model,
and its results are shown in Fig. S3. The reciprocals of all charac-
teristic roots for the VAR model appeared within the unit circle,
which indicates that this model is stable. The model could be used
to perform the Granger causality test and impulse response
analysis.

5.3.2. Granger causality test
The Granger causality test among GPM2.5, SI and TI was used in

this paper to understand the potential causal relationships between
Table 1
The selection results of the lag order in the VAR model, where * indicates the lag
order according to the criterion.

Lag LogL LR FPE (10�12) AIC SC HQIC

0 531.495 NA 35.600 �15.544 �15.446 �15.505
1 659.328 240.625 1.080 �19.039 �18.647 �18.883
2 683.078 42.610 0.702 �19.473 �18.787* �19.201
3 687.454 7.465 0.808 �19.337 �18.358 �18.949
4 718.527 50.266* 0.426* �19.986* �18.713 �19.482*
these three variables. Table 2 shows the results of the Granger
causality test. It can be seen that SI (p¼ 0.07) and TI (p¼ 0.005) are
both Granger causes for GPM2.5. This indicates that changes in the
industrial structure in terms of the SI and TI will affect the air
quality. The reason for this is that changes in the industrial added
value influence the total demand for fossil fuel use, e.g., the reduced
use of coal in power plants and the heat production industry. In
addition, the widespread use of clean energy could also reduce air
pollution, i.e., natural gas and wind energy. Moreover, changes in
the GPM2.5 (p ¼ 0.005) and TI (p < 0.001) will also cause structural
SI changes. This indicates that the changes in the PM2.5 concen-
tration counteracted government environmental regulations and
promoted the reform of industrial enterprises and, ultimately,
structural SI changes in the long term.
5.3.3. Impulse response function
In the VAR model, the dynamic effects among GPM2.5, SI and TI

could be better interpreted according to the impulse response
function. Fig. 8 shows the mutual responses or interactions among
these three variables. The horizontal ordinate represents the
number of lag periods of the response, and the vertical axis in-
dicates the impulse responses of the dependent variables caused by
the independent variables. The blue lines represent the impulse
response function, and the shaded areas indicate two standard
deviations. According to the Granger causality test results, four
responses were selected for analysis in this study, i.e., GPM2.5 to SI,
GPM2.5 to TI, SI to GPM2.5 and SI to TI. In addition, 1- to 10-lag pe-
riods were used to reflect the impulse responses.

For the dynamic relationship between GPM2.5 and SI (Fig. 8a), an
increasing negative response occurred in the 1- to 4-lag periods,
with the responses ranging from 0 to �0.0003. Although a positive
response occurred in the fifth lag period, it quickly became nega-
tive, which lasted and remained steady for 5 lag periods. This in-
dicates that industrialization has a positive impact on air pollution
control in both the short and long terms. The reason for this effect
might be that the development of industrialization has promoted
an increase in the GDP. In addition, changes in the energy structure
were also accompanied by an increase in SI, which promoted de-
clines in the PM2.5 concentration and GPM2.5. However, this process
is convoluted, and it cannot be achieved overnight.

Similar to the case for SI, a significantly negative response of
GPM2.5 to TI (Fig. 8b) occurred in the 1- to 3-lag periods (0
to �0.0004). Then, in the fourth lag period, a positive response
(0.0003) appeared. However, the response of GPM2.5 to TI
decreased rapidly in the next lag (�0.0005), and it remained
negative in the next 5- to 10-lag periods. On the one hand, a
crowding effect on industrialization appeared to accompany the
increase in TI. This phenomenon could promote the transfer of la-
bor and capital from SI to TI. This will reduce the pollutant emis-
sions and improve the environment. On the other hand, the
increase in TI will also drive a rise in the GDP. This could result in a
long-term and stable negative response of GPM2.5 to TI.

The responses of SI to GPM2.5 and TI were also calculated in this
Table 2
Granger causality test results for GPM2.5, SI and TI.

Equation Excluded Chi-squared Degrees of freedom (df) Probability

GPM2.5 SI 8.665 4 0.070
GPM2.5 TI 15.022 4 0.005
SI GPM2.5 14.936 4 0.005
SI TI 37.116 4 < 0.001
TI GPM2.5 7.730 4 0.102
TI SI 5.318 4 0.256

All 21.314 8 0.006



Fig. 8. The responses of GPM2.5 to SI (a), GPM2.5 to TI (b), SI to GPM2.5 (c) and SI to TI (d).

Table 3
Variance decomposition results for the different variables.

Lags Standard error GPM2.5 (%) SI (%) TI (%)

1 0.0015 100 0 0
2 0.0017 93.571 1.315 5.114
3 0.0020 92.664 2.155 5.181
4 0.0022 89.804 3.884 6.312
5 0.0024 87.144 3.703 9.753
6 0.0026 86.923 3.689 9.388
7 0.0027 87.613 3.699 8.688
8 0.0028 87.850 3.840 8.310
9 0.0030 88.298 3.578 8.124
10 0.0031 88.242 3.836 7.921
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study. A fluctuating trend was observed in the response of SI to
GPM2.5 (Fig. 8c), and it exhibited alternating positive and negative
changes in general. The minimum and maximum responses
occurred in the 4-lag (�0.0051) and 5-lag (0.0055) periods,
respectively. Since the planning of the secondary industry in the
BTH area is often subject to compulsory government intervention,
the impact mechanism of GPM2.5 on SI is complex. This would also
cause uncertainties in the response of SI to GPM2.5.

Fig. 8d shows the impulse response spectrum between SI and TI.
Positive responses were found in the 4-, 7- and 8-lag periods, and
the other lag periods exhibited negative responses. The response
trend suggests that increasing TI would reduce SI in the short term,
and this might be consistent with the expectations of the Chinese
government. In contrast, increasing TI could also promote SI in the
medium term, especially in the 4-lag period (~0.0065). However,
this promotion ability is limited, and the response became negative
again in the 5-lag period and reached a steady state in the 9- and
10-lag periods (~-0.0028). This is consistent with the current policy
of integrating the development of primary, secondary and tertiary
industries.

5.3.4. Variance decomposition
Variance decomposition is an important part of the VAR model

and is mainly used to determine the contributions of structural
impacts on the changes of endogenous variables (Campbell and
Ammer, 1993). Therefore, it is selected to reveal the dynamic
characteristics between GPM2.5 and the industrial structure and to
analyze the contributions of structural shocks of SI and TI to GPM2.5.
Table 3 summarizes the variance decomposition results for GPM2.5,
SI and TI. These results indicated that the fluctuation in GPM2.5 was
significantly influenced by the added values of SI and TI. In the 1-lag
period, the impact of SI and TI on GPM2.5 was little. However, the
influences of SI and TI diverged with increasing lag periods. The
contribution rate of SI increased rapidly from the 1- to 3-lag periods
and stabilized from the fourth lag period, at approximately 3.80%.
The contribution rate of TI first increased and then decreased,
reaching a peak of approximately 9.75% in the 5-lag period. Despite
this phenomenon, the impacts of both SI and TI on GPM2.5 gradually
increased over time, which is in line with expectations. Compared
with SI, TI has a greater impact on GPM2.5, and the effect is grad-
ually enhanced with increasing lag periods. This occurs because the
main energy-consuming industries of SI are concentrated in the
mining and manufacturing sectors, which are closely related to life
in China, and the associated potential for controlling air pollution is
limited. In addition, the contribution of the supply-side reform of TI
to air pollution reduction is also very prominent.

6. Policy implications

At present, the core objective in the BTH region is to maintain
the balance between economic development and air pollution
reduction; thus, we put forward several policy suggestions. First,
traditional industries have experienced extensive growth modes
with low energy utilization and high consumption, leading to se-
vere air pollution in the BTH region. On the one hand, we should
use technological innovation and scientific management to actively
adjust the industrial structure and guide the development of new
clean industries. Clean industries, including new energy vehicles,
industrial energy conservation and emissions reduction, circular
economy, and resource recovery strategies, will have broad
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development prospects. On the other hand, in terms of resource
complementarity, the unreasonable industrial structure can be
eliminated by building a regional cooperation system. Meanwhile,
we should adjust the economic and energy structures, effectively
control pollutant emissions, and promote the coordinated devel-
opment of energy and the environment.

Second, we should establish an interest balance and compen-
sation mechanism in the BTH region. Industrial upgrading and
transformation require cooperation between governments,
wherein the key is to coordinate interests, especially in the game
relationship between local governments and enterprises. For
example, most pillar industries in Hebei province are heavy in-
dustries with high pollution and emissions. The profit tendency of
enterprises makes it difficult to close factories or change the
existing industrial structure. Therefore, it is difficult to win the
cooperation of enterprises if the emissions reduction policy on air
pollution cannot establish a compensation mechanism for in-
terests. Moreover, to promote the application of clean energy to
enterprises, the government should increase the support policies,
such as by increasing the subsidies and reducing the costs of using
clean energy.

Last, the synergy between low carbon promotion and pollution
control should be strengthened. Low-carbon technology refers to
new technologies that can effectively control greenhouse gas
emissions, including energy conservation and clean and renewable
energy. The government should make a long-term development
plan and give priority to the development of new clean and low-
carbon technologies. Enterprises should be encouraged to invest
in the development of clean and low-carbon technologies and the
production of low-carbon energy. Then a complete clean economic
development system for low-carbon agriculture, industry, and
service industry can be gradually formed. In addition, we should
strengthen international cooperation and the exchange of low-
carbon and clean technologies, actively participate in low-carbon
development around the world, and try to explore cleaner devel-
opment methods.

7. Conclusions

Recently, the Beijing-Tianjin-Hebei (BTH) region in China has
experienced severe air pollution episodes over the past years, and
an increasing number of studies have focused on exploring the
potential impact and response mechanism of PM2.5 in different
fields. However, the current satellite-derived PM2.5 data sets have
coarse spatial resolutions (3e50 km) and poor quality, as limited by
the widely used aerosol optical depth (AOD) products. Aimed at
these problems and based on the new high-resolution and high-
quality Multiangle Implementation of Atmospheric Correction
AOD products, a historical PM2.5 data set at a higher 1 km resolution
from 2000 to 2018 was first reconstructed using the linear mixed
effect model in the BTH region. The spatiotemporal variations in
PM2.5 pollution and its response to the industrial structure during
the last two decades were fully investigated.

Our results indicated that the model performs well in daily
PM2.5 estimates, with a high CV-R2 of 0.85 and a small RMSE of
21.49 mg/m3, and can well capture the historical PM2.5 variations
(e.g., monthly R2 ¼ 0.72) in the BTH region. High PM2.5 concen-
trations are mainly observed in the southeast urban areas, where
human activities are concentrated, while low values are found in
the northwest vegetated areas. In general, PM2.5 pollution has
shown a significant decreasing trend by 1.53 mg/m3/year (p < 0.01)
from 2000 to 2018 in the BTH region, especially since 2013 (i.e.,
trend ¼ �6.83 mg/m3/year, p < 0.01). In addition, both secondary
industry (SI) and tertiary industry (TI) showed significantly nega-
tive effects on GPM2.5 from a long-term perspective, and
approximately 9.8% and 3.8% of the GPM2.5 changes can be
explained by the TI and SI, respectively. Therefore, the reform of the
tertiary industry may be more effective for the prevention and
control of air pollution in the future.

Although the PM2.5 dataset produced in this paper shows high
overall accuracy, because it is limited by the statistical regression
model, the estimation and prediction ability of the model still has
some deviation, which may lead to certain differences in historical
PM2.5 concentrations between satellite observations and the real
situation. In addition, only the influence of the industrial structure
in various economic factors on PM2.5 pollution is considered in the
current study. Therefore, in our future research, we will compre-
hensively consider the impacts of different factors on PM2.5 pollu-
tion. Moreover, we will try to develop more accurate PM2.5 remote-
sensing estimation methods and expand the research scale to the
national level to generate long-term series of high-resolution and
high-quality PM2.5 data set in China. This will be of great impor-
tance for future economic and health research on PM2.5 pollution.
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