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• The Fu-Liou radiation transfer mecha-
nism model showed excellent perfor-
mance in estimating total and diffuse
radiation in China;

• Aerosols have weakened the brighten-
ing of China due to the negative forcing
on direct radiation;

• Although aerosol causes a diffuse fertili-
zation effect, GPP is still lost in part due
to high levels of aerosol loading in
most areas of China.
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Several air pollution episodes occurred in China in the past decade, and high levels of aerosols load also caused
the changes of radiation, which could further influence the gross primary productivity (GPP) in the terrestrial
ecosystem. This paper focuses on the spatiotemporal variations and relationship of aerosol-radiation-GPP in
China during a heavy pollution period (2001–2014). For this purpose, the Fu-Liou radiation transfer mechanism
model was used to estimate total radiation (TR) and diffuse radiation (DIFR) at the spatial resolution of 1° × 1°
based on the satellite aerosol optical depth (AOD) and other auxiliary data. This model shows excellent perfor-
mance with an R2 of 0.88 and 0.79 for TR and DIFR, respectively. A significant increasing trend (0.23 W m−2-

year−1) in TR was found in China in this phase, and it was mainly attributed to DIFR. Furthermore, a scenario
without aerosols (AOD= 0) was simulated as a comparison to quantify the aerosol radiative forcing, which in-
dicated that aerosols play a catalytic role in DIFR, increasing it by approximately 19.55%. Despite all this, aerosols
have weakened the brightening of China due to the negative forcing on direct radiation. Meanwhile, 0.65–4.20
kgCm−2 year−1 increase of GPP was also captured in seven regions of China during this phase.However, the sig-
nificant negative response of GPP to aerosol was found in most ecosystems in the growing season of vegetation,
and the highest correlation of −0.76 (p b .01) existed in the central China forest regions. It suggests although
aerosol causes a diffuse fertilization effect, GPP is still lost due to high levels of aerosol load in most areas of
China during growing season of vegetation. This paper aims to determine the relationship among the aerosol-
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radiation-ecosystem productivity in different regions of China, which could provide a reference for the divisional
strategy formulation and classification management in different ecosystems.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Solar radiation is an essential energy source for biogeochemical pro-
cesses in the natural world, which play a crucial role in the energy and
material cycles of earth systems. The observation of surface radiation is
of great significance in understanding climate change and global
warming. Therefore, the radiation parameters, including direct radiation
(DIRR), diffuse radiation (DIFR), clearness index and diffuse fraction
(DF), have been measured in China since the mid-20th century (Che
et al., 2007). Based on those datasets,many previous studies have focused
on long-term spatiotemporal variations in radiation to understand the
trends and influencing mechanisms of radiation (Zhang et al., 2015; Zou
et al., 2016). In recent decades, a process from dimming to brightening
existed in China (Tang et al., 2011). From 1961 to 1989 (darkening pe-
riod), the surface solar radiation decreased rapidly, with trends of
−8.3Wm−2 decade−1; in contrast, approximately 2.1Wm−2 decade−1

upward trends were observed for 1989–2013 (brightening period)
(Wang and Wild, 2016). After that, Zhou et al. (2018) used the dataset
from 48 radiation sites to calculate the trends of surface radiation in five
climatic regions of China from 1962 to 2015, which suggested a down-
ward trend above 20MJ m−2 per decade among five different climatic
zones in this phase. However, most studies were based on site-
measured radiation datasets, and serious spatial discontinuities and low
spatial coverage brought limits to the adequate understanding of radia-
tion in all of China. Fortunately, many approaches were established and
used tomap the radiation in China according to the relationship between
radiation and meteorological variables. Radiation transfer mechanism
models (Huang et al., 2009), empirical relationships (Fan et al., 2018),
mechanisms/deep learning approaches (Fan et al., 2019;) and other sta-
tistical or satellite derived methods (Kaplan and Kaplan, 2020) are the
four most widely used traditional methods to assess the radiation net-
work. Several factors affect solar radiation, among which aerosols play
an essential function (Zhang et al., 2020a).

Atmospheric aerosols, especially those with aerodynamic diameters
of 0.01–10 μm, can seriously affect the cloud formation and atmospheric
environment (Andreae and Rosenfeld, 2008; Tie and Cao, 2009; Wei
et al., 2017; Wei et al., 2018), and do huge damage to human health
(Wei et al., 2019e, 2019f, 2020). In recent years, with the development
of urbanization and industrialization, a quantity of aerosols has been re-
leased into the atmosphere, producing serious air pollution (Chan and
Yao, 2008). Especially in the 21st century, the problem of air pollution
has been anurgent national crisis in China. Aerosols can cause variations
in solar radiation due to their absorbing and scattering effects. The IPCC
Fifth Assessment report indicated that radiation forcing decreased by
approximately 0.9 (1.9–0.1) W m−2 due to the reduction in aerosols
at the global scale, which is conducive to reducing global warming
(Stocker et al., 2013). This impact mainly depended on the type, mixing
states and optical properties of particles (Chandra et al., 2004;
Keppelaleks and Washenfelder, 2016). Zhang et al. (2018) found a sig-
nificant aerosol direct radiative forcing in southern China from 2001
to 2016, and this effect was most noticeable in 2007, at
−24.75 W m−2. A decreasing trend in this effect was captured in this
phase, with downward trends of 4Wm−2 per year. The results confirm
that aerosols can significantly increase DIFR and reduce DIRR.

Terrestrial ecosystems are very sensitive to climate change (Chen
et al., 2020; Qu et al., 2020; Zhang et al., 2020b), and the ecosystem func-
tions are directly influenced by the radiative forcing of aerosols. Several
studies indicated that the proportion of DIFR in total radiation (TR)
could increase due to the radiative forcing of aerosols, results in the en-
hancement of photosynthesis of vegetation, which is called the diffuse
fertilization effect (Osullivan et al., 2016; Williams et al., 2016; Unger
et al., 2017). However, due to the differences in aerosol composition,
the responses of ecosystem functions to aerosols are also varied. Sulfate
aerosols could promote photosynthesis of vegetation (Gu et al., 2003).
Similarly, secondary organic aerosols oxidized fromvolatile organic com-
pounds (VOCs) could also increase the net primary productivity (NPP) in
ecosystem (Rap et al., 2018). In contrast, the GPP and NPP might de-
crease by aerosols generated fromwildfire due to the enhancement of at-
mospheric absorption, the improvement of atmospheric stability, and
the intensification of regional drought, which eventually cause soil
water disturbance (Yue et al., 2017; Yue and Unger, 2018). Moreover,
the ecosystem environmental variables, e.g., temperature, humidity
and evaporation, could also be affected by aerosols, and those changes
would eventually impact GPP (Moazenzadeh et al., 2018; Jiang et al.,
2019). These influences also show obvious heterogeneity due to the
leaf area index, canopy configuration, vegetation type and growing envi-
ronment (Cheng et al., 2015; Niyogi et al., 2004). However, aerosol-
radiation-ecosystem productivity studies are still insufficient in China,
and themajority of that research is based on in-situ-measured radiation.
Therefore, it is extremely indispensable to establish a radiation network
and quantify the impact of aerosols on the radiation in different regions
of China, which benefits by completely acknowledging the relationship
among aerosol-radiation-ecosystem productivity.

This paper attempts to use the Fu-Liou radiation transfermechanism
model, which owns a complete set of parameterization schemes for
cloud optical properties, combinedwith theModerate Resolution Imag-
ing Spectroradiometer (MODIS) aerosol optical depth (AOD), Clouds
and the Earth's Radiant Energy System (CERES) cloud and other auxil-
iary data to estimate the radiation in China during the heavy pollution
period (2001–2014). After that, a scenariowithout aerosols is simulated
as a comparison to quantify the aerosol radiative forcing. In addition, the
spatiotemporal variations and relationship of aerosol-radiation-GPP are
described in this paper, and the sensitivity of different types of ecosys-
tems to radiation and aerosol are assessed as well. This paper aims to
determine the relationship among the aerosol-radiation-ecosystem
productivity in different regions of China, which could provide a refer-
ence for the divisional strategy executer and classificationmanagement
in different ecosystems.

2. Study area and dataset

2.1. Study area

The spatiotemporal variations and relationship of aerosol-radiation-
GPP in China are analyzed in this paper. Due to the different geograph-
ical locations, significant differences in radiation existed within main-
land China. Therefore, China was divided into seven regions (Fig. 1):
northeastern, northern, eastern, southern, central, northwestern and
southwestern China; these areas are abbreviated NEC, NC, EC, SC, CC,
NWC and SWC, respectively (Ding et al., 2007), in this paper. The mu-
nicipalities, provinces and autonomous regions contained in each region
are shown in Table S1. Due to the special climate characteristics of the
Inner Mongolia autonomous region, this area was divided into three
parts, which severally belong to NEC, NC and NWC.

2.2. Datasets

2.2.1. MODIS AOD data
Two traditional algorithms, i.e. dark-target (DT) algorithm and

deep-blue (DB) algorithm were widely used to generate the MODIS
aerosol products. It has been found that the retrievals of DB aerosol
products showed better performance than DT aerosol products,



Fig. 1. The spatial distribution of China meteorological administration (CMA) radiation and aerosol robotic network (AERONET) AOD sites, and the seven study areas are also shown.
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especially over bright urban surfaces (Wei et al., 2019c, 2019d). How-
ever, large numbers ofmissing values are exits in this dataset due to un-
favorable observation conditions. To increase the data coverage, a
combined DT and DB (DTB) dataset aerosol product was generated.
The selection of DT or DB data in each grid depends on the normalized
difference vegetation index (NDVI) in this gird. Where NDVI≤0.2, the
DB data are used, and where NDVI ≥0.3, the DT data are selected. If the
NDVI was between 0.2 and 0.3, the higher quality assurance (QA) flag
aerosol data is selected, and if both return QA = 3 for DT and DB data,
themean value is used (Sayer et al., 2014). In this paper, theMODIS col-
lection 6.1 (C6.1) Level 3 DTB AOD product was selected, with the tem-
poral and spatial resolution of daily and 1° × 1° (Sayer et al., 2019; Wei
et al., 2019a, 2019b). Compared with some old version aerosol products
(collection 6 and collection 5.1), the latest C6.1 aerosol products has im-
proved the retrievals of both DT andDBAODbased on the update of sur-
face reflectance (Hsu et al., 2019; Wei et al., 2019c). The quality
assurance flags were used to represent the accuracy for MODIS AOD re-
trievals product, which ranges from 3 (high) to 0 (low) (Levy et al.,
2010). And the highest quality AOD products are used in our study.
Those products are captured by two satellites, i.e., Terra and Aqua, and
the Terra AOD (MOD 08) was used to calculate the surface radiation
for ante meridiem in this paper, while Aqua AOD (MYD08) was used
for post meridiem. In addition, the monthly mean AOD was obtained
to analyze the relationship of aerosol-radiation-GPP. However, several
missing data points were caused by the satellite and cloud features in
China. Therefore, we first combined the Terra and Aqua daily DTB
AOD retrievals at 550 nm to increase the spatial coverage. The combined
AOD shows the excellent consistency compared with the AOD mea-
sured at AERONET sites (Fig. 1), with the correlation coefficient R2 of
0.73, and it is described in detail in our previous study (Xue et al.,
2020). In addition, the records that reported fewer than six times for
each month have been removed to prevent accidental errors caused
by missing data (Hsu et al., 2013).
2.2.2. CERES cloud data
In this paper, the optical parameters of cloud-ice and cloud-water

were calculated according to seven cloud characteristics: cloud-water
content, effective radius of cloud water particles (ERCWP), cloud-ice
content (CIC), effective scale of cloud ice particles, cloud top height,
cloud bottom height and cloud fraction. Those datasets were sourced
from the CERES-SYN Edition 3a Level 3 products (Doelling et al.,
2013). The spatial and temporal resolutions of the cloud data were
1° × 1° and 3 h, respectively. In addition, the cloud data were divided
into four layers according to the top pressure, i.e., high cloud (b300
hpa), low cloud (N700 hpa), higher middle cloud (300–500 hpa) and
lower middle cloud (500–700 hpa).

2.2.3. Other auxiliary data
Three profiles of meteorological parameters sourced from National

Centers for Environmental Prediction (NCEP)/National Centers for At-
mospheric Research (NCAR) were selected in this study, and include
pressure, temperature and humidity (Kalnay et al., 1996). Moreover,
the MODIS MCD43C3 surface albedo product (Schaaf et al., 2002) was
also input into the Fu-Liou model. In addition, the Modern-Era Retro-
spective Analysis for Research and Applications, version 2 (MERRA-2)
aerosol composition products (Gelaro et al., 2017) were also used as
input data to represent the aerosol composition in the Fu-Liou model.
The proportion of seven aerosol types was provided by this product, in-
cluding organic carbon, black carbon, sulfate, coarse- and fine-mode
dust and sea salt. After that, the bilinear interpolationwas used to inter-
polate all datasets to the same spatial resolution of 1° × 1° as AOD.

2.2.4. Radiation data
The situ-measured radiation dataset from 2001 to 2014 sourced

from the China Meteorological Administration (CMA) was used in this
paper to verify the accuracy of the Fu-Liou model. Before that, we
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screened out 99 CMA sites, which have effective records of more than
one third, to reduce the error caused by data loss. Among all sites,
only 12 sites provided the diffuse radiation measurements. The average
of the daily radiation for onemonth was taken as themonthly mean ra-
diation in this study. The spatial distribution of all sites is shown in Fig. 1.
In general, the distribution of CMA radiation stations in China is uni-
form, and can be used to evaluate the radiation simulation results of dif-
ferent regions in China.

2.2.5. GPP and ecosystem type data
To explore the relationship among aerosol-radiation-GPP, the

MODIS GPP data (MOD17A2H) were employed in this paper. Excellent
inversion accuracy for this product has been described by Steve et al.
(2015), and the temporal and spatial resolutions of these data were
8 days and 500 m, respectively. Similar to other input data, the GPP
was also interpolated to the spatial resolution of 1° × 1° according to
the bilinear interpolation. Similar to the aerosol products, the highest
quality products were used in this paper. To further determine the rela-
tionship of aerosol-radiation-GPP in China, the ecosystem type data
were also applied in this study. The ecosystem type data were collected
from the Resource and Environment Data Cloud Platform at a spatial
resolution of 1 km. Seven ecosystem types, including farmland, forest,
grass, urban, water and wetland, urban desert and bare land, are classi-
fied in this product. However, due to the sample number limits, we only
used the ecosystem types of farmland, forest and grass for the analysis.
Fig. S1 shows the proportion of ecosystem types in different regions. In
general, the grass ecosystem accounts for the highest proportion in
China, accounting for 32%, and it is especially the case in SWC (49%).
The forest ecosystem is dominant in NEC, SC and CC, accounting for
35%, 64% and 45%, respectively. In contrast, the main ecosystem type
is farmland in NC and EC, and the proportion for both is 43%. In addition,
due to the whole coverage of the Taklimakan Desert in NWC, other eco-
systems account for the greatest area in this region, up to 53%.

3. Methods

3.1. Fu-Liou model

The Fu-Liou model, which was modified by Kato et al. (2005), com-
bined with the above input data, was used to construct the network of
total radiation (TR), diffuse radiation (DIFR) and direct radiation
(DIRR) in China from 2001 to 2014, at a temporal and spatial resolution
of 3 h and 1°× 1°.We also calculated the diffuse factor (DF) according to
the formula as follows:

DF ¼ DIFR
TR

� 100% ð1Þ

Fifteen bands of short wave (0.175–4.0 μm) and twelve bands of
longwave (2200–10 cm−1) could be calculated by this model. The radi-
ation transmission scheme of delta-four-stream approximation was
adopted in this paper to reduce the simulation error caused by clouds.
This radiation transmission scheme can also capture the solar radiation
under all-sky conditions. For the proportions of soot, insoluble aerosol,
accumulated dust, coarse dust, sulfate aerosol, accumulated sea salt
and coarse sea salt of the Fu-Liou model, the MERRA-2 data for black
carbon, organic carbon, fine-mode dust, coarse-mode dust, sulfate,
fine-mode sea salt and coarse-mode sea salt were adopted. We calcu-
lated the AOD of different aerosol types according to the formula as fol-
lows:

Aerosol type AOD ¼ Aerosol type AODMERRA−2

AODMERRA−2
� AODMODIS ð2Þ

After that, two optical parameters including single scattering albedo
and asymmetry factor for total aerosol composition were calculated
based on the optical properties of various aerosols set in Fu-Liou
model, which are shown in Table S2. In addition, the aerosols are set
as the externallymixed for Fu-Lioumodel. Moreover, the vertical distri-
bution of aerosol was also set as the default exponential decline mode.
In addition, a scenario without aerosols (AOD = 0) was assumed in
this study, and the TR, DIFR, DIRR and DF under this scenario were
also simulated to quantitatively analyze the influence of aerosols on
radiation.

3.2. Statistical analysis

Based on the CMAmonthly radiation data,many evaluation indexes,
including linear regression equation (slope and intercept), Pearson cor-
relation coefficient (R), mean absolute error (MAE) and root mean
square error (RMSE), were established to verify the accuracy of Fu-
Liou model. The statistical metrics were explained as follows:

MAE ¼ 1
n

Xn

k¼1

j RadiatinMeasure−RadiationModel j ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

k¼1

RadiatinMeasure−RadiationModelð Þ2
vuut ð4Þ

Among them, the R indicates the linear correlation between model
and observation. The slope, intercept and MAE represent the overall es-
timation accuracy of this model, and the slope N 1 (slope b 1) indicates
the overestimation (underestimation) of the Fu-Liou model. Moreover,
the uncertainty of model simulation was expressed by RMSE. Then the
ordinary least squares fitting method is selected in this paper to calcu-
late the annual averaged linear trend of aerosol-radiation-GPP from
2001 to 2014. In addition, the correlation coefficient approach was
also used to analyze the relationship among aerosol-radiation-GPP,
and the paired-samples t-test was selected to evaluate the statistical
significance.

4. Results and discussions

4.1. Model evaluation

Fig. 2 shows the density scatterplots of the monthly TR and DIFR
simulations and measurements from 2001 to 2014 in China. To explore
the applicability of Fu-Liou model in different ecosystems, the simula-
tion results of the TR for farmland, forest and grass ecosystems (Fig. 2
(i-b)-(i-d)) and the DIFR for farmland, forest and urban ecosystems
(Fig. 2(ii-b)-(ii-d)) were evaluated. The results illustrated that the Fu-
Liou model had an excellent performance in simulating TR, with high
R2 values of 0.88, and low RMSE and MAE of 18.12 W m−2 and
21.35Wm−2. However, this model appeared to slightly underestimate
for TR, especially in the grass ecosystem, with the slope of 0.70 and
RMSE of 29.51 W m−2. In contrast, the best simulated performance
was observed in the farmland ecosystem with the largest R2 and slope
values (R2 = 0.89, slope = 0.80) and lowest simulation uncertainties
(RMSE = 18.27 W m−2, MAE = 20.08 W m−2). This was mainly due
to the difference of the surface albedo. High level of surface albedo
could cause the multiple scattering between the sky and surface land,
results in higher DIFR (Pinty et al., 2005). Furthermore, the radiative
forcing of carbon aerosol is between 0.23 W m−2 and 0.16 W m−2 due
to the influence of cloud cover and surface albedo (Penner et al.,
1998). Additional, the different of aerosol types in several of ecosystems
can also bring the uncertainty formodel (Bassani et al., 2016). Similar to
TR, theDIFRwas also estimatedmost appropriately in the farmland eco-
system,which exhibited the highest correlation (R2= 0.89), the closest
slope (0.97) and the lowest RMSE (9.95 W m−2) and MAE
(7.46Wm−2)withmeasured DIFR. Remarkably, a slight overestimation
was captured in the forest ecosystem, with the slope of 1.05. The



Fig. 2. Density scatterplots of the model simulated TR (i) and DIFR (ii) results for the Fu-Liou model at themonthly scale over China. The black dashed and red solid lines indicate the 1:1
line and the linear regression line, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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simulation effect of the urban ecosystemwas theworst, with the lowest
slope (0.91) and R2 (0.76) and the largest RMSE (15.59 W m−2) and
MAE (12.69 W m−2). The aerosol optical properties and vertical distri-
bution could also cause the uncertainty (Li et al., 2020).

In addition, significant difference existed in radiation simulatingper-
formance for variousmonths. Fig. 3 shows the box plots for themonthly
average radiation of the Fu-Liou model and CMA measurements in
China for 2001–2014. The underestimation of TR mainly occurred
from March to September, which was 13.90 W m−2–35.34 W m−2, es-
pecially in June, with the error of 14.5%. Moreover, obvious overestima-
tion was captured for the results of DIFR simulation, which is one of the
reasons for the underestimation of TR. This phenomenon mainly oc-
curred in February, March, April and June, with the underestimation of
23.85%, 25.33%, 15.39% and 10.04%, respectively. Compared to themea-
surements, those errorsweremainly attributed to the deviation of aero-
sol composition and radiation transmission scheme. In addition, the
spatial interpolation of input data could also cause data uncertainty.
Nevertheless, the radiation trends were accurately captured by the Fu-
Liou model, and it can be applied to explore the spatiotemporal varia-
tion of radiation and analyze its potential impact in China.

4.2. Spatiotemporal trend in radiation, AOD and GPP

Fig. 4 shows the spatial distribution of radiation in China during
2001–2014. In general, the annual averaged TR among China was
156.18 W m−2, contributed by 84.00 W m−2 for DIFR and 72.18 m−2

for DIRR. The highest DIFR and DIRR was captured in SWC and NWC,
which was 91.49 W m−2 and 70.92 W m−2, respectively. In contrast,
the lowest was found in NEC and CC with the DIFR and DIRR of
72.89 W m−2 and 42.25 W m−2, respectively. In addition, the higher
DF was existed in SC (66.78%), EC (65.85%) and CC (64.77%) region.
This is mainly due to the distribution of aerosols (Mahowald et al.,
2011). The spatial distribution of AOD has also been calculated, and it
was similar to DIFR in most area of China. Due to its high-level industri-
alization and urbanization, the highest AOD occurred in CC, and the an-
nualmean valuewas 0.73. Similarly, the AOD in EC, SC and NCwere also
at a high level, whichwas 0.69, 0.58, and 0.47, respectively. By contrary,
the low aerosol loading existed in NEC (0.29), NWC (0.25) and SWC
(0.25), where the anthropogenic activities were not as high as other re-
gions. Furthermore, the spatial distribution of GPP was also shown in
Fig. 4. The GPP in China gradually increased from the northwest to the
southeast. And it was highest in SC, reaching 315.04 kgC m−2.

Fig. 5 shows the temporal trends of radiation in China from 2001 to
2014. Before that, we compared the calculated TR and DIFR trends with
the groundmeasured trends in this paper. The results indicated that the
simulated TR showed the same trendwith themeasured TR, whichwas
0.23Wm−2 year−1 during this period in China. However, the simulated
DIFR trend (0.38 W m−2 year−1) was lower than the measured DIFR
trend (0.67Wm−2 year−1). The number of surface siteswith DIFRmea-
surement is only 12 in China, and they are mainly located in urban re-
gions. High-speed development of urbanization and industrialization
make aerosol loading increase rapidly, resulting in a faster growth
trend for DIFR, which could cause significant uncertainty for the assess-
ment of DIFR trend. Despite all this, the interannual variations are rela-
tively consistent between simulations and measurements, which could
also indicate the accuracy of Fu-Liou model. Moreover, the increase of
DIFR resulted in the increasing trend of DF, which was approximately
0.16% per year. And the DIRR trend was −0.15 W m−2 year−1 among
China during this phase.

Fig. 6 shows the spatial distribution of annual averaged radiation
trends for the four radiation parameters in China from 2001 to 2014.
However, there was obvious spatial heterogeneity in radiation trends.
The most substantial increases of TR mainly occurred in SWC and
NWC. The increase of DIFRwas themain reason for the rise of TR. Signif-
icant upward trends for DIFR and downward trends for DIRR existed in
NC. In contrast, those trends were polar opposites in SWC. Thus, the



Fig. 3. The box plots of the monthly mean simulated and measured TR (a) and DIFR (b) in China from 2001 to 2014. The red boxes indicate the CMA measured radiation, and the black
boxes represent Fu-Liou model simulated radiation. In the boxes, the upper and lower bands of red dashed and solid lines indicate the maximum and minimum radiation under the
non-abnormal range. The top, bottom and center of the boxes represent 75%, 25% and 50% of values, respectively, and the crosses and circles are outliers. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The spatial distribution of TR (a), DIFR (b), DIRR (c), DF (d), AOD (e) and GPP(f) in China from 2001 to 2014.
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Fig. 5. The values and temporal trends of radiation parameters in the scenarioswith aerosol (black lines) and no-aerosol (red lines) in China from 2001 to 2014: (a) TR; (b) DIFR; (c) DIRR
and (d) DF. The surface measured values and temporal trends for TR (number of sites = 99) and DIFR (number of sites = 12) were also given (blue lines). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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annual radiation trends in the seven regions were calculated separately
to comprehensively obtain the variations in radiation among all of
China.

Table 1 lists the average trends of radiation in different regions of
China. Generally, all regions showed increases in DIFR, with the fastest
uptrends of 0.34 W m−2 year−1 (p b .1) in the CC region. The slowest
trendsoccurred in theSCregion,withtheuptrendsof0.04Wm−2year−1

(p N .1). Similar uptrends existed in DF, and the trends were 0.00% -
0.28% per year for all regions. However, significant differences were
found for the regional distribution in the temporal trends of DIRR. For
the NEC, NC and SWC regions, a great increasing trend was captured,
of 0.13–0.15 W m−2 per year. In contrast, a substantial downtrend
trend was observed in the EC, SC and CC regions, which was −0.29 to
−0.31 W m−2 per year. In addition, the DIRR in NWC was kept stable
(trend = −0.00, p N .1). Due to the change of DIFR and DIRR, except
for the EC and SC regions, the trends of TR in the other five regions in-
creased, with upward trends in the range of 0.05 W m−2 year−1 to
0.38 W m−2 year−1. Table S3 shows the radiation trends in seven re-
gions under the no-aerosol scenario. In this scenario, the upward
trend of DIFR also existed in most regions, with the increased trends
of 0.03 to 0.21 W m−2 per year, which was significantly lower than
the trends of aerosol scenario. In addition, the results indicated that
the aerosol could cause the opposite trend of DIFR in NEC and SWC re-
gion. Furthermore, aerosols also result in retarding brightening, espe-
cially in NEC region, the trends of TR was in the range from
0.43 W m−2 year−1 to 0.30 W m−2 year−1

.

However, the aerosol level in China had dramatically improved over
the years. Fig. 6 also shows the spatial distribution of the annual trends
of AOD and GPP in 2001–2014. In general, a significant increasing trend
was captured during this phase, accounting for 65.8% of the total area of
China, and the mean upward trend was 0.002 per year. However, the
spatial distribution of AOD trends varied on the local scale. More rapidly
increasing trends were found in the NC, EC and CC regions, and the up-
ward trends were 0.005 year−1 (p b .1), 0.008 year−1 (p b .01) and
0.009 year−1 (p b .05), respectively. High-level urbanization and indus-
trial production lead to the increasing environmental burden in this re-
gion, especially for air pollution. Conversely, a significant downward
trend was found in central Inner Mongolia, which was attributed to
the implementation of policy on windbreak and sand-fixation in
China. In addition, with the contribution of the ‘Green Wall of China’
in this area, most dust transport had been blocked (Tan et al., 2015).
Furthermore, low-level industrialization and emissions of air pollutants
were also helpful in the decreasing of AOD (Guo et al., 2011). The GPP
trends increased overall in China, with the averaged upward trend of
1.17 kgC m−2 year−1

, while the decreasing samples only accounted for
12.9% of all. For regional scales, except for a slight decreasing trend
that occurred in SC, all regions had an upward trend (0.65–4.20 kgC
m−2 year−1). This trendwasmost significant in NC, which is consistent
with the trend of diffuse radiation.

4.3. Response of radiation to aerosols

Four radiation parameters were calculated under the no-aerosols
scenario to quantify the effect of aerosols on radiation. Fig. 5 also
shows the differences in radiation caused by aerosols in China during
2001–2014. Due to the extinction of aerosols, DIRRwas substantially re-
duced, and the annual mean loss of DIRRwas−30.99Wm−2. The most
serious impact of aerosols onDIRR occurred in 2007,whichwas asmuch
as −36.74 W m−2. In contrast, the aerosols played a catalytic role in
DIFR, which increased approximately 19.55%. In 2009, the increase of
DIFR caused by aerosols was 17.75 W m−2, accounting for 26.56% of
the total diffuse radiation. Additionally, the TR and DF also separately



Fig. 6. The annual averaged trends for TR (a), DIFR (b), DIRR (c), DF (d), AOD (e) and GPP(f) in China from 2001 to 2014. The black dots indicate the 90% confidence level of correlation
coefficient (p b .1).
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changed −17.26 W m−2 and 13.43%, respectively, resulting from the
impacts of the aerosols.

However, striking spatial and temporal diversities exist in China,
which are caused by the differences in aerosol types and the variations
in solar elevation (Yang et al., 2016). Therefore, the seasonal mean
changes in radiation caused by aerosols were also calculated in the
seven areas in this study and are listed in Table 2. The DIFR in the
NWC region suffered the most intense positive influence by aerosols
among all regions, with the annual mean DIFR increasing by
18.93 W m−2, while the weakest influence occurred in the SC region,
whichwas only 8.50Wm−2. The greatest impact of aerosols onDIFR oc-
curred in autumn for the EC, SC and CC regions, which were
16.12 W m−2, 18.55 W m−2 and 14.14 W m−2, respectively, while the
influence was intense in summer for NC and NWC. The main cause of
Table 1
The averaged trends of TR, DIFR, DIRR and DF in seven regions from 2001 to 2014 (* indi-
cates p b .1).

Region TR
(W m−2 year−1)

DIFR
(W m2 year−1)

DIRR
(W m−2 year−1)

DF
(% year−1)

NEC 0.31 0.17* 0.14 0.02
NC 0.38 0.24* 0.13 0.05
EC −0.02 0.30* −0.31 0.27
SC −0.26 0.04 −0.30 0.22
CC 0.05 0.34* −0.29 0.28
NWC 0.30 0.30 −0.00 0.09
SWC 0.24 0.09 0.15 0.00
this phenomenon was the temporal heterogeneity of dominant aerosol
types in each region (Wang et al., 2011). In addition, due to agricultural
production requirements, crop residue burning mainly occurred in au-
tumn or summer, producing extensive aerosols and leading to the pos-
itive impact on DIFR in those regions (Zhang et al., 2017).

For TR, a negative influencewas found in all regions, which indicated
that the negative effect of aerosols on DIRR was stronger than the posi-
tive effect on DIFR. Interestingly, a significant temporal consistency was
captured in China; that is, a more intense impact existed in spring and
summer than in autumn and winter. Among all study areas, except for
NWC (where the greatest values occurred in summer), the maximum
responses of TR to aerosols all occurred in spring, in the range of
−20.00Wm−2 (SWC) to−32.10Wm−2 (NC). This might be probably
associated with the high solar elevation in spring and summer, which
result in strong solar radiation as well as strong aerosol impacts in
these two seasons.Moreover, the aerosols also caused theDF to increase
significantly. The greatest impact occurred in the EC region, and the
mean positive effect was 18.73%. In contrast, the NWC region showed
the weakest response which was 9.43%. Generally, the aerosol-
induced changes in DFwere higher in autumn andwinter than in spring
and summer, especially in the NWC, NC, EC and CC regions, increasing
16.20% - 21.41%. Sulfur-bearing fossil fuel combustion (e.g. coal),
might be the main culprit for the increase in sulfate aerosol output in
the heating season (winter) in these areas, and the sulfate aerosols re-
maining in the atmosphere could markedly enhance the DF (Keppel
and Washenfelder. 2016). Moreover, most urban agglomerations are
distributed in those regions, which could cause mass emissions from



Table 2
Seasonal mean changes in radiation caused by aerosols for seven regions in China from 2001 to 2014.

Radiation Season NEC NC EC SC CC NWC SWC

TR
(W m−2)

Spring −20.56 −32.10 −30.68 −21.73 −28.34 −21.78 −20.00
Summer −15.44 −30.41 −24.84 −11.77 −24.63 −25.91 −15.85
Autumn −8.19 −17.06 −18.45 −14.84 −18.25 −15.90 −9.84
Winter −9.43 −15.64 −17.93 −13.04 −15.64 −10.71 −10.72

DIFR
(W m−2)

Spring 12.20 17.52 12.08 2.00 9.54 19.76 9.53
Summer 8.74 17.57 14.89 9.77 13.95 23.60 5.18
Autumn 8.89 15.89 16.12 18.55 14.14 19.66 9.12
Winter 11.21 14.16 12.98 11.03 10.67 12.71 10.18

DIRR
(W m−2)

Spring −32.76 −49.62 −42.76 −23.73 −37.88 −41.54 −36.77
Summer −24.18 −47.98 −39.73 −21.54 −38.58 −49.51 −35.89
Autumn −17.08 −32.95 −34.57 −33.39 −32.39 −35.56 −28.00
Winter −20.64 −29.8 −30.91 −24.07 −26.31 −23.42 −23.43

DF (%)

Spring 11.91 16.19 18.23 11.83 17.65 13.22 10.46
Summer 8.07 16.20 15.97 9.27 15.73 14.39 7.35
Autumn 10.47 16.20 19.30 16.95 19.45 16.23 8.84
Winter 17.61 18.54 21.41 16.58 20.07 15.58 11.07
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industrial production and residential activities, and result in high-level
aerosol loadings in the atmosphere.

Furthermore, obvious differences of aerosol radiative forcing are
found in the ecosystems of farmland, forest and grass in seven regions.
The proportions of summertime mean changes in radiation caused by
aerosols to the radiation under no-aerosol scenario were used to
indicate the aerosol radiative forcing. Fig. 7 shows the aerosol radiative
forcing to different ecosystems during vegetation growing season (Jun-
Jul-Aug) in China. In general, the intensifying of DIFR by aerosols is
lower than theweakening of DIRR,which results in the negative aerosol
radiative forcing on TR. The main reason for this is that the concentra-
tion of coarse-mode aerosols (the primary causes of the loss of DIRR)
is higher than that of fine-mode aerosols (Xia, 2014). However, the
aerosol radiative forcing on DIRR was more significant in farmland eco-
system than other two ecosystems in most areas, especially in EC
(−51.0%) and CC (−47.4%) regions. Similarly, except NEC and NC re-
gions, the aerosol radiative forcing on DIFR in farmland was also higher
than others, with the values varying from 9.7% to 20.9%, and the highest
forcing on DIFR existed in grass ecosystem in NEC and NC with the
values of 11.1% and 19.6%, respectively. Due to the aerosol productions
by human activities, the highest negative aerosol radiative forcing oc-
curred in farmland ecosystem in almost all regions, with the averaged
forcing in China of −12.4% and varying between −5.7% - -16.7% in
seven regions. Above all, aerosols show the negative radiative forcing
in China ecosystems, which could also affect the physiological processes
of vegetation.
Fig. 7. The averaged aerosol radiative forcing of TR (circle), DIFR (blue bar) and DIRR (orange b
Aug). (For interpretation of the references to colour in this figure legend, the reader is referred
4.4. Relations among the aerosol-radiation-ecosystem productivity

To investigate the impacts of aerosols on radiation for different types
of ecosystem, the statistical calculations are made for the three main
types of ecosystem in China from 2001 to 2014. Table S4 indicates that
significant positive correlations between AOD and DIFR during autumn
existed in the farmland, forest and grassland ecosystems, and the Pear-
son correlation coefficients Rwere 0.63 (p b .05), 0.63 (p b .05) and 0.69
(p b .01), respectively. In contrast, negative correlations existed in
spring between AOD and DIFR, with correlation coefficient R values of
−0.03, −0.03 and −0.10 for farmland, forest, and grassland, respec-
tively. The correlation was also negative between AOD and TR as well
as DIRR (R b 0) in spring for all types of ecosystem. However, the confi-
dence coefficient p values for the negative correlationswere all N0.1, in-
dicating that the statistical significancewas not achieved. The reason for
this might probably be that the dominant aerosol composition for most
areas of China in spring is large particles, especially coarse mode dust,
which exhibited high blocking of radiation (Du et al., 2008). Moreover,
with the increasing of solar elevation, the DIFR and DIRR are also in-
creasing. Both of them have been proved to be a functional relationship
(Soler, 1988). Therefore, the differences in solar elevation could also
lead to uncertainties in the relationship among AOD-radiation. Fig. 8
shows the relationships between the aerosol and DF for farmland, forest
and grass ecosystem in China for different seasons during 2001–2014. In
spring, a significant positive effect was captured for the farmland eco-
system in the NEC and SC regions, with correlation coefficients R of
ar) for ecosystem of farmland, forest and grass during vegetation growing season (Jun-Jul-
to the web version of this article.)
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0.73 (p b .01) and 0.83 (p b .01). For the forest ecosystem, this effect
existed in the NEC, NC and SC regions, and the R values were 0.68
(b0.01), 0.53 (p b .05) and 0.63 (p b .05), respectively. However, a signif-
icant negative effect was found in the grass ecosystem for NWC (R =
−0.56, p b .05), which was mainly due to the strong extinction caused
by dust during this phase. In contrast, a positive correlation existed in
the SWC and NEC grass ecosystem regions, with R values of 0.54
(p b .05) and 0.79 (p b .01). During summer, except for the farmland
and forest ecosystems in SWC (statistical significance not achieved),
positive correlations between AOD and DF were widespread in all eco-
systems in China. The highest R value occurred in the EC farmland re-
gions (R = 0.85, p b .01). The DF in the EC forest region also possessed
a high correlation with aerosol, with R of 0.83 (p b .01). Furthermore,
obvious positive impacts of aerosol on DF existed among the main eco-
systems of China in the autumn andwinter, except the SC farmland eco-
system for autumn and the NEC forest and grassland ecosystem for
winter. The correlation coefficients R in the farmland, forest and grass
ecosystemswere in the range of 0.27–0.81, 0.12–0.60 and 0.41–0.61, re-
spectively for autumn, and 0.11–0.79, 0.05–0.83 and 0.49–0.69, respec-
tively for winter. Apart from the influence of aerosol, other factors,
e.g., cloud cover, altitude, slope and aspect, may also cause radiation
changes, which we could consider in future research.

Aerosol can indirectly affect vegetation productivity (e.g. GPP) by
modifying radiation; therefore, the correlation coefficients between
AOD and GPP were also calculated to understand the extent by which
the aerosols influence ecosystems of different types for different sea-
sons. Fig. 9 shows the spatial distribution of seasonal Pearson correla-
tion coefficients in seven areas from 2001 to 2014. Noticeably, the
retrieval of AOD and GPP are both affected by surface albedo, in our
paper the highest quality AOD and GPP products are used, which
Fig. 8. The seasonal Pearson correlation coefficients of aerosol-DF for three ecosystems in Chin
indicate the confidence coefficients at the 90%, 95% and 99% levels, respectively.
could eliminate the influence of surface albedo on the two variables in
the greatest extent. It is clear that aerosols imposed significant negative
effects onGPP in the eastern area of NWC,whichweremainly caused by
the extinction of dust aerosols for all season. In contrast, only a few re-
gions exhibited a significant positive correlation, e.g., the eastern areas
of SWC and NEC, which are characterized with high forest coverage.
This phenomenon was related to the increasing DIFR, which results in
the enhanced effect of diffuse fertilization.

In the growing season of vegetation (most in summer), increased air
humidity would result in high AOD as well as high cloud cover, which
would in turn decrease the TR inmost areas of SC, and thus there existed
a negative correlation between AOD and GPP. Similar to spring, the for-
ests in eastern SWC andNEC appeared to exhibit the diffuse fertilization
effect. Approximately 18.6% of areas in China showed significant corre-
lation between AOD and GPP (p b .1) in autumn, amongwhich negative
correlation accounts for 65.1% and positive correlation for 34.9%. The
correlations did not achieve statistical significance in most areas of
China, where the vegetation photosynthesis was limited by other envi-
ronmental variables, i.e., temperature, water and CO2 concentration. In
winter, several aerosol pollution episodes occurred in China from
2001 to 2014, and the influence of aerosols on GPP was generally
more intense than other seasons. Approximately 15.1% of the areas
showed significant negative correlation, and the negative correlation
wasmainly concentrated in easternNWCandNC region. The absorption
of light by aerosols could reduce the total radiation, thus reducing veg-
etation light utilization.

Photosynthetic efficiency plays an important role in the spatial dis-
tribution for the relationships of aerosol-GPP, and it mainly depends
on the leaf area index and canopy structure of vegetation. Therefore,
the correlation coefficient R was also separately calculated in farmland,
a from 2001 to 2014: (a) Spring; (b) Summer; (c) Autumn and (d) Winter, where *,**,***



Fig. 9. The spatial distributions of seasonal Pearson correlation coefficients between AOD and GPP in China during 2001–2014. The black dots indicate the significance level of 90%.
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forest and grass ecosystems in China. In addition, to exclude the restric-
tion of temperature and CO2 concentrations on photosynthesis, the cor-
relation between AOD and GPP was only collected in the growing
season of vegetation (Jun-Aug). Fig. 10 shows the Pearson correlation
coefficients R of AOD-GPP for three ecosystems in China during the
growing season of vegetation. Although the negative effects (R b 0)
were widespread in China, the confidence levels did not all achieve sta-
tistical significance (p N .1). The limitation ofwater andnutrients such as
nitrogen and phosphorus in this season could also influence the rela-
tionship of aerosol-GPP. Furthermore, the farmland ecosystems were
mostly established by human activities (Dai et al., 2020; Yao et al.,
Fig. 10. The relationships between AOD and GPP for farmland (a), forest (b) and grass (c) ec
2019), in which was involved large human interference, and the rela-
tionship of aerosol-GPP was thus non-significant. For forest ecosystems
in EC and CC, there existed significant negative impacts of AOD on GPP,
with the correlation coefficients R of −0.59 (p b .05) and − 0.76
(p b .01), respectively. Although the diffuse fertilization effect could
cause the increase of GPP, especially for the canopy vegetation, the
loss of direct radiation was higher, and it might eventually lead to a re-
duction in the total GPP. In contrast, the R value was 0.24 (p N .1) in the
SWC region, where was characterized with low levels of aerosols. The
negative effects of aerosols on GPP occurred in all of China in the grass
ecosystem, and the strongest effect occurred in NWC (R = -0.46,
osystems during the growing season of vegetation in seven regions from 2001 to 2014.
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p b .1). This suggests that high level aerosols could play a negative role in
the photosynthesis of farmland, forest and grass ecosystems in most
areas of China.

5. Conclusions

The spatiotemporal variations and relationships of aerosol-
radiation-ecosystem productivity in China for 2001–2014 were
discussed and analyzed in this paper. For this purpose, a radiative trans-
fer model (Fu-Lioumodel) was selected to simulate the network of his-
tory radiation. The simulated results show excellent consistency
comparedwith in situmeasured radiation data, with the correlation co-
efficient R2 (RMSE,MAE) of 0.88 (18.12Wm−2, 21.35Wm−2) and 0.79
(14.40 W m−2, 11.49 W m−2), respectively.

From 2001 to 2014, a significant increasing trend was captured in
diffuse radiation in China, which was 0.22 W m−2 per year, especially
in central Chinawhere the upward trendwas 0.34Wm−2 year−1. In ad-
dition, the diffuse factor also increased in this phase formost areas, with
trends of 0.00%–0.28% year−1. However, the radiation trend under no-
aerosol scenario indicated that although the aerosols increase the up-
trend of diffuse radiation, it could relieve the brightening trend in
China due to the weakening of direct radiation by aerosols. In this pe-
riod, the aerosol optical depth (AOD) increased at a rate of approxi-
mately 0.002 year−1. Quantified analysis also shows that aerosols
caused the mean diffuse radiation to increase 13.73 W m−2, and total
radiation and direct radiation to decrease 17.26 W m−2 and
30.99 W m−2, respectively, in China.

Spatiotemporal variations of aerosol radiative forcing existed for dif-
ferent ecosystems in China, which can also cause the heterogeneity of
aerosol-GPP relationship, and those features were captured in our
study. It was found that a significant negative correlation between
AOD and GPP existed in the forest ecosystems of eastern and central
China during the growing season of vegetation. Although aerosols can
cause diffuse fertilization effects on canopy vegetation, the growth of
vegetation might still be restrained because of reduced radiation by
high level of aerosols in this area. Fortunately, with the proposal of an
air pollution control action plan in China in 2013, the air pollution has
been effectively controlled, which shows a profound significance for
the improvement of ecosystem productivity.
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