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A B S T R A C T

Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing
severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection
model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi
and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were
analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-
Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering
the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust
detection experiments. The monitoring results were compared with the true colour composite images, and results
showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright
surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive
Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products
were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial
distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of
83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

1. Introduction

Desertification is becoming increasingly serious under the back-
ground of global warming, especially in arid and semi-arid areas where
dust storms occur more frequently. Dust can directly affect the earth's
radiation balance by absorbing and scattering solar radiation and emit-
ting long-wave radiation (Tegen, 2003; Zhao et al., 2013; Bilal et al.,
2017; Sun et al., 2015; Wei and Sun, 2017), and it can indirectly affect
the Earth's revenue and energy balance by acting as cloud condensation
nuclei and altering the lifetime of clouds (Albrecht, 1989; Huang et al.,
2006; Bilal et al., 2013; Hillger et al., 2014). In addition, long-distance
dust transport will seriously affect human life along the transport
route, resulting in huge economic losses.

In recent years, with the rapid development of remote sensing tech-
nologies, remote sensing images that have wide spatial coverages and
multiple detection channels have come to play important roles in dust
detection. Dust has a strong absorption of visible light and near infrared
wavelengths; and can weaken amount of the sun's radiance that reaches
the ground. Dust can also absorb long wave radiation from the ground

and emit long wave radiation. Thus, the above unique and typical optical
properties can be used in dust detection. Many satellites have been
applied to dust storm detection, such as the Advanced Very High Reso-
lution Radiometer (AVHRR) (Amato et al., 2006; Janugani et al., 2008),
Moderate Resolution Imaging Spectroradiometer (MODIS) (Gharai et al.,
2013; Cao et al., 2015), Chinese FengYun series (FY) (Zhou et al., 2007;
Hu et al., 2008), Total OzoneMapping Spectrometer (TOMS) (Kaskaoutis
et al., 2008; Awad et al., 2016) and Ozone Monitoring Instrument (OMI)
(Kaskaoutis et al., 2010; Jafari and Malekian, 2015; Madhavan
et al., 2017).

Globe ecological issues have attracted increasing attention from the
public with the development of the society, and to date, a great deal of
systematic research has been done on remote sensing dust detection
(Claquin et al., 1999; Zheng et al., 2001; Miller, 2003; Amato et al., 2006;
Hu et al., 2008; Zhao et al., 2010; Xu et al., 2011, 2016; Borgne et al.,
2013; Di et al., 2016). Ackerman used the radiative transfer model to
simulate the radiation characteristics of thermal infrared channels
(8.5 μm, 11 μm and 12 μm) and realized dust detection with AVHRR data
under a clear sky by using the Brightness Temperature Difference (BTD)
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of thermal infrared channels (Ackerman, 1997). Hao and Qu calculated
the Thermal infrared Dust Index (TDI) by studying the relationships of
brightness temperature and Aerosol Optical Depth (AOD) of MODIS
channels 20, 30, 31, and 32, which was then adopted from strong sand
storms that occurred over the Atlantic Ocean during 2004–2006. The
results showed that the MODIS AOD had high consistency with TDI and
can be used for dust intensity monitoring (Hao and Qu, 2007). Borgne
et al. simulated the influence of dust aerosols in different altitudes and
concentrations to the brightness temperature of intermediate and ther-
mal infrared channels, and modified the Saharan Dust Index (SDI) to
monitor dust using Suomi NPP VIIRS (Visible Infrared Imaging Radi-
ometer Suite) data at night (Borgne et al., 2013). Dust detection accuracy
is influenced by many factors, such as underlying surface type, dust in-
tensity, altitude of the dust layer and cloud type (Jafari and Malekian,
2015). In addition, to improve the detection accuracy and decrease the
impact of clouds and surface inhomogeneity, the dust storm detection
algorithms, which utilize visible, near infrared (NIR) and thermal
infrared (TIR) channels, are also widely applied. Miller uses visible and
near infrared wavelengths to provide additional colour information for
dust monitoring in the thermal infrared channel, enabling sand and dust
monitoring over both land and ocean (Miller, 2003). Based on the
spectral and radiative physical properties of mid-infrared and thermal
infrared channels, Hu et al. (2008) proposed a dust retrieval algorithm
using the BTD, Infrared Difference Dust Index (IDDI) and the ratio of
middle infrared reflectance to visible reflectance. Correlation analyses
were performed between dust monitoring results, PM10, horizontal visi-
bility and AOD, and the results showed that the algorithm can realize
automatic dust detection with high accuracy and a low false alarm rate
(Hu et al., 2008). Zhao et al. realized dust and smoke monitoring over
ocean and land by using visible, NIR, Mid-Infra-Red (MIR) and TIR
channels, which can be used for global thick dust and heavy smoke
monitoring, except in ice/snow areas (Zhao et al., 2010). Samadi and
Boloorani established training samples of dust, cloud pixels and various
surface types and performed spectral analyses on all channels of MODIS,
and a Global Dust Detection Index (GDDI) was developed, which can be
applied for the effective extraction of dust ranging over ocean and land
(Samadi and Boloorani, 2014). Di et al. analysed BTDs, aerosol properties
of dust and other surface features in visible, NIR and thermal infrared
channels and proposed the Enhanced Dust Index (EDI); the dust

monitoring results showed high consistency with surface visibility data
(R2 ¼ 0.78) (Di et al., 2016).

On the basis of previous research results, a pixel database including a
variety of typical feature types, such as dust over different surface types,
cloud, vegetation, Gobi, and ice/snow were collected, and the distribu-
tions of the top-of-atmosphere (TOA) reflectance and brightness tem-
peratures were analysed; based on which a Simplified Dust Detection
Algorithm (SDDA) was generated. This method is based on a prior pixel
database, which is constructed by selecting dust pixel values over
different land use types for different specific sensor channels. It can
reduce the effects of changes in sensor characteristics on the monitoring
results. Multi-temporal Suomi NPP VIIRS images containing dust storms
were collected and applied to detection experiments with the proposed
algorithm. In addition, the Meteorological Information Comprehensive
Analysis and Process System (MICAPS) dust ground-measured data and
OMI Aerosol Index (AI) products, which can well describe the distribu-
tion of dust storms, were selected for validation and comparison.

2. Study area and data source

2.1. Study area

In this paper, the northern China and Mongolian regions
(32�E ~ 47�E, 74�N ~ 123�N) were selected as the study area (Fig. 1).
Due to the influence of a temperate continental climate, these areas are
controlled by continental air masses year-round and are dominated by
dry weather, especially in winter and spring. At the same time, the
Eurasian continent formed a high-pressure area in spring and winter that
is influenced by the monsoon, and China's coastal areas formed a low-
pressure area affected by ocean water, leading to strong winds and
dust storms when the atmosphere was transported from inland to coastal
areas, causing huge economic losses.

2.2. Data source

2.2.1. VIIRS data
VIIRS is the expansion and improvement of the AVHRR and MODIS

sensors on board the Suomi NPP satellite. It is a geosynchronous orbit
satellite that transits at local time 13:30 every day. It captures data in 22

Fig. 1. Geographical location of the study area.
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spectral channels that range in wavelength from 0.402 μm to 12.488 μm
and have varying spatial resolutions, including five high-resolution I-
channels (375 m), sixteen medium-resolution M-channels (750 m) and
one panchromatic Day/Night channel (750 m). The M-channels cover
eleven Reflectance Solar Channels (RSB) and five Thermal Emissive
Channels (TEB) (Hillger et al., 2014), and detailed parameters are shown
in Table 1. The reflectance of the visible and NIR channels and the
brightness temperature of the thermal infrared channels have been
widely used in dust storm monitoring (Chen et al., 2014).

2.2.2. MICAPS data
MICAPS is a satellite communication and database supported human-

computer interaction system that is used for the production of weather
forecasting. Its main function is to display graphs and images of meteo-
rological data and to edit and process meteorological graphs. It can also
provide weather forecasting working platforms in the medium-term,
short-term and current-time. Ground observation data, aerological
sounding data, satellite cloud image data, and so on, a total of 19 kinds of
data included in the MICAPS. Table 2 shows the dust information and the
correspond code in MICAPS.

2.2.3. OMI AI products
Aura, the third satellite of the Earth Observation System (EOS), was

successfully launched on 15 July, 2004. Onboard the Aura, the OMI
possesses the Global Ozone Monitoring Experiment (GOME), the SCan-
ning Imaging Absorption spectroMeter for Atmospheric CHartographY
(SCIAMACHY) and TOMS, observing the earth with a resolution of 13 km
� 24 km on a global scale (daily). OMI wavelengths range from 270 nm
to 500 nm, containing two ultraviolet (UV) channels UV1 (270–310 nm),
UV2 (310–365 nm) and a visible channel VIS (365–500 nm) (Levelt
et al., 2006).

Compared with visible channels, the surface reflectance of the UV
channel is low, except for ice/snow, and clouds. The reflectance differ-
ence is less in UV, and the radiation energy received by the sensor is
mainly from atmospheric scattering; the mutual effects of atmospheric
particle scattering and aerosol make it possible to estimate the atmo-
spheric aerosol absorption in a UV channel (Badarinath et al., 2008). The
AI is calculated as the residual between the measured and calculated
radiance using the Lambert Equivalent Reflectivity (LER) (Kaskaoutis
et al., 2010). Before using the OMI near-UV aerosol algorithm
(OMAERUV), the first step is to calculate the LER R�

388 at 388 nm by
assuming that the atmospheric scattering is pure Rayleigh and that the
atmosphere is bounded by an opaque Lambertian reflector of reflectance
R�
388 (Torres et al., 2007). The LER at 354 nm (R�

354) is calculated
using R�

388:

AI ¼ �100 log10

"
Iobs354

Icalc354

�
R*
354

�
#

(1)

where Iobs354 is the radiation recorded by a sensor and Icalc354 is the calcu-
lated LER.

The AI is a measure of the Rayleigh-scattered radiance from aerosol
absorption. When a strong absorptive aerosol is present, the OMI-AI
value of a dust storm is greater than 0 and increases with an increase
of in dust storm concentration. The AI of a cloud coverage area is
approximately zero, whereas the non-absorptive aerosol AI is negative.
As an improvement of TOMS AI, AI has been widely used in atmospheric
particle detection (Li et al., 2014), and its products are generally used to
validate the dust detection results (Sang et al., 2014). Kaskaoutis ana-
lysed dust intensity in 2008, and the results indicated that both OMI AI
and TOMS AI can accurately describe the dust storm areas (Kaskaoutis
et al., 2008). In addition, he analysed the AI spatial, seasonal and
inter-annual variations between 2004 and 2008 and found that the AI
was sensitive to UV-absorptive dust aerosols (Kaskaoutis et al., 2010).
Jafari and Malekian compared and evaluated the performance of five
dust detection algorithms using MODIS Deep Blue (DB) AOD and OMI AI
products (Jafari and Malekian, 2015).

3. Dust monitoring principles and methods

3.1. Dust radiation characteristics

The World Meteorological Organization (WMO) divides dust storms
into four grades, according to intensity: dust-in-suspension (visibility: >
10 km), blowing dust (visibility: 1–10 km), dust storm (visibility:
200–1000 m) and severe dust storm (visibility: < 200 m) (WMO, 2005).
From dust-in-suspension to dust storm, the dust particle radius ranges
from 0.01 μm to 100 μm, whereas dust storms are mainly composed of
dust particles with radii of more than 5 μm (Zheng et al., 2001). In far-IR
channels, dust particles emit long-wave radiation by absorbing solar
short-wave radiation, and the emission can be weakened with increasing
wavelength. Due to similar radiation characteristics of dust storms with
land use types and the effects of several factors such as particle size,
shape and texture, dust storms can rarely be accurately identified by
using a single channel. According to previous research, dust has lower
reflectance in the blue channel compared with other surface features
(e.g., water, vegetation, cloud), whereas it has higher reflectance in the
infrared channel; thus, dust detection can be comprehensively performed
using both visible and near-infrared channels (Wallace, 2006). In
mid-wave infrared wavelengths, the radiation energy received by a
sensor includes both the back scattering of solar radiation reflected by
dust and the long-wave radiation emitted by it. With an increase in
wavelength, the reflecting solar radiation ability of dust can be reduced,
so dust identification can be realized by using the BTDs between the
short-wave infrared and the thermal infrared channels (Ackerman,
1989). Ackerman found the BTDs in the thermal infrared channel
(8–12 μm): water vapour absorption at 12 μm and 8.5 μm were more
obvious than at 11 μm under clear sky. When dust weather occurs, the
extinction effect at 11 μm is much larger than those at 12 μm and 8.5 μm;
thus, dust storm monitoring can be performed according to the bright-
ness differences at 8.5 μm, 11 μm and 12 μm (Ackerman, 1997).

Table 1
NPP VIIRS image M channels.

Channels Wavelength Range (μm) Wavelength Center (μm) Resolution (m)

M1 0.402–0.422 0.412 750
M2 0.436–0.454 0.445 750
M3 0.478–0.498 0.488 750
M4 0.545–0.565 0.555 750
M5 0.662–0.682 0.672 750
M7 0.846–0.885 0.865 750
M8 1.23–1.25 1.24 750
M10 1.58–1.64 1.61 750
M11 2.225–2.275 2.25 750
M12 3.66–3.84 3.7 750
M13 3.973–4.128 4.05 750
M14 8.4–8.7 8.55 750
M15 10.263–11.263 10.763 750
M16 11.538–12.488 12.013 750

Table 2
MICAPS codes of dust weather.

Code Code Meaning Code Code Meaning

6 Dust in Suspension 7 Floating dust
8 dust devil 9 Dust storm
30 Mild dust storm weakened in

the past hour
31 Mild dust storm

32 Mild dust storm enhanced in
the past hour

33 Strong dust storm weakened in
the past hour

34 Strong dust storm 35 Strong dust storm enhanced in
the past hour
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3.2. Dust storm detection method

The northern China and Mongolian regions feature complex surface
types, including desert, Gobi, bright surface, vegetation and snow-
covered areas. To analyse the reflectance characteristics of different
surface features in the NPP VIIRS visible and near-infrared channels as
well as the brightness temperature characteristics of the middle- and far-
infrared channels, several surface types were adopted in this study as
training samples, including thick dust, thin dust, vegetation, thin cloud,
thick cloud and bare land. In addition, training samples were selected
from pixels with different time phases and regions in decrease random
error and increase the universality of the dust detection algorithm. The
mean reflectance of samples as radiation characteristics was calculated,
Fig. 2 shows the radiation differences of surface features in VIIRS chan-
nels, except for M6 and M9, which are affected by sensor Rotating
Telescope Assembly (RTA) mirror surface contamination (Moeller, 2012)
and the strong absorption by water vapour, respectively.

3.2.1. Cloud/ice/snow identification
Thick clouds and snow have high reflectance in visible channels

(Fig. 2-a) and low brightness temperatures (Fig. 2-b) compared with
other surface features. The TOA reflectance of dust lies between those of
dark surfaces and bright surfaces. In MIR channels, dust can not only
reflect solar radiation but also emit long-wave radiation, leading to high
brightness temperatures. Therefore, ice/snow, thick clouds and dust can
be separated using the visible and brightness temperature channels. In
this study, to intuitively analyse the differences of clouds and ice/snow
and to realize dust information extraction, we randomly selected re-
flectances of cloud, ice/snow and dust in blue channel and their bright-
ness temperatures in the mid-infrared channel to draw the scatter plot
(Fig. 3). Moreover, the variances of sample points were calculated to
show standard deviations in the blue (M3) and NIR (M12) chan-
nels (Fig. 4).

As shown in Fig. 3, the reflectance and brightness temperature of ice/
snow area differ greatly and are influenced by melting degree, thus
showing a discrete two-dimensional space distribution. Due to the impact
of the surface feature types, the radiation characteristics of thin cloud
fluctuate wildly, especially over Gobi or desert, which leads to overlap in
the scatter plot. Overall, cloud and ice/snow areas have lower brightness
temperature than do dust area in MIR channels, with higher reflectance
in the blue channel; thus, cloud and ice/snow can be removed based on a
simple threshold algorithm by comprehensively using the blue (M3) and
MIR (M12) channels.

In this study, we calculated the mean reflectances of thick/thin dust,

thick/thin cloud and ice/snow and selected the deviation as the random
error (Fig. 4). In thin cloud areas, the radiation energy received by the
sensor is the sum of land surface reflection and thin cloud reflection.
Therefore, the radiation characteristics of thin cloud areas are difficult to
determine, because the radiation error distribution is large and is similar
to that of ice/snow. Most of the thick clouds and parts of thin clouds and
ice/sow surfaces can be identified and removed as follows:

ρ*3 � 0:44 or BT12 � 300 (2)

where ρ*3 represents the top-of-atmosphere reflectance of channel 3 and
BT12 represents the brightness temperature of channel 12 for VIIRS data.

3.2.2. Bright surface removal
Influenced by climate conditions, dust weather generally occurs in

arid and semi-arid areas, where the land surface is barren and desertifi-
cation is serious. At the same time, dust storms usually occur in dry
seasons, when the vegetation is in the wilting period. In the visible

Fig. 2. The spectral curves of the typical surfaces in the pixel database, except for channels 6 and 9. a) The top-of- atmosphere reflectance of typical surfaces in visible and near infrared
channels. b) The brightness temperature of typical surfaces in the middle-infrared and thermal-infrared channels (from 3.6 μm to 12 μm).

Fig. 3. Scatter plot of brightness temperature (M12) versus reflectance (M3) for thick dust
(Black), thin dust (Red), thick cloud (Green), thin cloud (Yellow) and ice/snow (Blue).
(For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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channels, the reflectance of bright surfaces is very similar to that of dust,
especially in a region with thin dust (Fig. 2a). The sample points have
large standard deviations, indicating wide ranges of TOA reflectance for
bright surfaces. Therefore, it is difficult to separate the dust and bright
surfaces from the visible channels. For the Badain Jaran Desert in the
west of Inner Mongolia, the deserts appears as red in the true colour
composite images because the dust particles are rich in minerals. The
reflectance is relatively lower compared with the dust, Gobi desert and
desert, which can be used to distinguish desert from dust because the
reflectance in the visible channel is lower than a certain threshold. The
brightness temperature of the bright surface area at 8.5 μm (M14) is
particularly lower compared to that of 10.763 μm (M15) (Fig. 2b). To
more clearly and visually analyse the differences between the bright
surfaces and other objects in channels 14 and 15 of VIIRS data, the BTDs
and standard deviations of all objects in the pixel database were calcu-
lated (Fig. 5).

Compared with other objects in the pixel database, the bright surfaces
show the lowest mean BTD at approximately �8 K. The water vapour
absorption in the 8.5 μm (M14) channel is greater than that in the
10.763 μm (M15) channel and as the water vapour content increases, the
difference becomes larger (Ackerman, 1997). In contrast, the BTD be-
tween 8.5 μm (M14) and 10.763 μm (M15) is known to show positive
values for dust due to the extinction effect of dust particles (Ackerman,
1997; Chen et al., 2014). Thus, the bright surface can be removed
as follows:

BT14 � BT15 � � 5:0 (3)

where BTi represents the brightness temperatures of channels i for
VIIRS data.

3.2.3. Dark surface removal
The TOA reflectance of dust storms shows similar change trends as

does vegetation, especially in the spring and winter seasons, when the
vegetation exhibits dark tones similar to dust storms in the true colour
images. According to the characteristics of the infrared channels, the dust
can both reflect the solar radiation and emit the long-wave radiation in
mid-infrared channels. In addition, in thermal infrared channels, the long-
wave radiation capability of the dust emission decreases with an increase
in wavelength. The absorption and decrease the electromagnetic wave by
dust differ significantly indifferent channels. By calculating the brightness
temperature of sample points in different channels, it was found that the

brightness temperature of dust sample points at 3.7 μm (M12) differed
greatly from those at 12.013 μm (M16), whereas the brightness temper-
ature of vegetation changed only slightly (Fig. 2-b); thus, vegetation areas
can be extracted according to the following condition:

BT12 � BT16 � 17:0 (4)

where BTi represents the brightness temperatures of channels i for
VIIRS data.

3.2.4. Dust detection
The split window BTD of dust aerosol under different visibility con-

ditions was simulated using the moderate resolution atmospheric trans-
mission (MODTRAN) 4 model, and the results showed that with an
increase in visibility, the BTD first decreased and then increased gradu-
ally; when the visibility was 0.5 km, the BTD reached the minimum value
(Hu et al., 2008). Radiation energy received by a sensor in the mid-wave
channel comes from both the dust reflected radiation and the heat ra-
diation emitted by the dust itself, whereas in the thermal channel, it
comes mainly from the heat radiation of dust itself. The dust emissivity at
11 μm was lower than that at 12 μm, leading to the negative BTDs be-
tween the channels (Han et al., 2013). Therefore, to eliminate the in-
fluence of thin clouds on dust monitoring, the split window BTDs of dust
and thin clouds in channels 13, 15 and 16 were analysed. Fig. 6 dem-
onstrates the relationships of BTD, and it is clear that thick dusts and thin
clouds can be easily distinguished; however, due to the occasional
overlapping of the brightness temperatures between thin dust and clouds,
the dust is extracted via a piecewise function in this study. The thin
clouds and most thin dust areas can be separated via Formula (5), and the
thick dusts can be extracted using Formulas (6) and (7) as follows:

3:0<BT13 � BT15 < 17:0 & BT15 � BT16 � �1:5 (5)

17:0 � BT13 � BT15 < 25:0 & BT15 � BT16 � �0:5 (6)

BT13 � BT15 � 25:0 (7)

where BTi represents the brightness temperatures of channels i for
VIIRS data.

Fig. 4. One standard deviation away from the means of thick dust, thin dust, thick cloud,
thin cloud and ice/snow. The diamonds and circles represent the reflectance of the M3
channel and brightness temperatures of the M12 channel, respectively.

Fig. 5. One standard deviation away from the means of the brightness temperature dif-
ference in VIIRS channel 14 and channel 15. The horizontal and vertical axes represent the
objects in the pixel database and the difference of brightness temperature, respectively.
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4. Results and discussion

4.1. Case study

In this study, more than twenty VIIRS images covering the study areas
with dust disasters occurred during the period 2012 to 2017 and were
collected to perform the dust monitoring experiments using the proposed

SDDA algorithm. Meanwhile, the MICAPS ground measured dust data
and OMI AI products were selected to validate and compare our detection
results. In this paper, three typical dust weather days with different de-
grees of pollution on April 23, 2014; March 14, 2015, and 5 May, 2016,
are selected and showed the spatial distributions of dust storms among
different products (Figs. 7–9). The images are true colour composite
image (RGB: M5, M4, M3) of VIIRS, the VIIRS dust detection result, the
MICAPS ground dust measurement and the OMI AI product result,
respectively. In addition, Fig. 10 shows the thick and thin dust storm
monitoring results over different areas from 2012 to 2017.

Fig. 7 shows the strong dust monitoring results at for Xinjiang prov-
ince and Inner Mongolia approximately at 14:30 P.M. on April 23, 2014.
The main body of the dust storm area is located above the desert
(Taklimakan desert and Kumtag desert). The thick dust storms exist as
large differences compared with the background in the image, which is
easily monitored. Unlike the thick dust storms, thin dust storms are not
obvious and are determined with difficulty via visual interpretation. By
ignoring the effect of clouds, the dust monitoring results can better meet
the scope of monitoring ground stations. The SDDA algorithm can
effectively extract the most thin dust storm areas compared with the true
colour composite images. Due to the absence of OMI AI products, only the
majority of the monitoring results in the eastern areas was compared. The
dust monitoring results showed large agreements in spatial distributions
with the OMI AI product.

Fig. 8 shows a typical thick dust storm that occurred at the junction of
China and Mongolia, as well as Inner Mongolia, at approximately 13:00
on March 14, 2015. The area is typical of desert and sparse vegetation
areas; therefore, it increased the difficulty of determining the scope of the
dust by visual interpretation. A thick dust storm can be effectively
identified compared with the true colour composite image. In addition,
the ground stations marked as dust storm are concentrated mainly in the
thick sand dust area. The area is determined to be a dust area via MICAPS
data, thus indicating the false negatives for dust over desert areas.
Compared with OMI AI products, the dust monitoring results showed

Fig. 6. Scatter plot of the brightness temperature difference between NPP VIIRS channels
13 and 15 versus the VIIRS channels 15 and 16 for thick dust (Green), thin dust (Red) and
thin cloud (Blue). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. VIIRS dust detection results b) with an RGB image a), MICAPS Data c), and OMI AI products d) on April 23, 2014.
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Fig. 8. VIIRS dust detection results b) with an RGB image a), MICAPS Data c), and OMI AI products d) on March 14, 2015.

Fig. 9. VIIRS dust detection results b) with an RGB image a), MICAPS Data c) and OMI AI products d) on May, 2016.
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high agreement with those in the spatial distributions of dust storms.
Validation and comparison indicated that the new proposed SDDA al-
gorithm can better distinguish the dust areas over both bright and
dark surfaces.

Fig. 9 shows the strong dust weather that occurred approximately
12:30 on 5 May, 2016, in central Inner Mongolia. The true colour images
showed that the dust storm was largely influenced by cyclonic rotation
and that the dust source is the boundary of Inner Mongolia andMongolia,
which are thin dust areas. As underlying surface is bare land, it is difficult
to distinguish dust areas via visual interpretation. Moreover, ground
stations can correctly monitor the dust storms, except in cloud-covered
areas. The results showed that the dust edges were in good agreement
with the MICAPS ground measurements. In addition to the differences in
OMI AI and VIIRS imaging time, the dust detection results were consis-
tent with those of OMI AI products, except for the differences between
the dust edge and the dust detection results on the right side of the image.
However, it is clear to that the SDDA algorithm can detect most of the
dust storms well, with few misses or erroneous phenomena, and that our
dust monitoring results are highly consistent with both the MICAPS
ground measurements and OMI AI products.

Fig. 10 shows the SDDA dust storm monitoring results for six NPP
VIIRS dataset from 2012 to 2017. The left panel provides the true colour
composite images, and the right panel shows the corresponding dust
detection results. Thick dust exists in large patches with large dust

contents in the image and are easily identified. In contrast, thin dusts are
easily affected by the land surface, especially over bright areas. However,
most thin dust storms over different surfaces (including vegetation and
bright areas) are better detected with the SDDA compared with the true
composite images. The verification results show that the new proposed
SDDA algorithm is overall robust and can better distinguish the dust
areas over both bright and dark surfaces.

4.2. Accuracy evaluation with MICAPS data

To quantitatively evaluate the stability of the algorithm, a large
number of dust storm detection results were collected for validation.
Here, the MICAPS groundmeasured data were used as reference data and
were matched with the dust detection results. Four evaluation indices,
including the Dust-station Correct Rate (DCR), Non-dust-station Correct
Error (NCR), Error Rate (ER) and Missing Rate (MR), were selected for
accuracy statistics (Sun et al., 2016) as follows:

DCR ¼ DSDP = TNDS (8)

NCR ¼ NSNP = TNNS (9)

ER ¼ NSDP = TNNS (10)

Fig. 10. VIIRS dust storm detection results from 2012 to 2017 in the northern China and Mongolian regions.
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MR ¼ DSNP = TNDS (11)

where DSDP is the Dust Station and Dust Pixels and represents both the
MICAPS stations and the detection results that are dust storms; NSNP is
the Non-dust Station and Non-dust Pixels and represents both the
MICAPS stations and detection results that are not dust storms; NSDP is
the Non-dust Station and Dust Pixel and represents the MICAPS stations
that are not dust storms but the detection results are dust pixels; and
DSNP is the Dust Station and Non-dust Pixel and represents the MICAPS
stations that are dust storms, but the detection results are not dust pixels.
TNDS and TNNS represent the Total Numbers of Dust Stations and Non-
dust Stations, respectively. However, the MICAPS data are only available
from 2014 to 2016; thus, a total of nine SDDA dust storm results covering
the common period 2014–2016 were collected for accuracy validation.
The statistical results are shown in Table 3.

Table 3 gives the quantitative evaluation results for NPP VIIRS data
which include serious dust storms on different dates from 2014 to 2016.
The accuracy evaluation matrix shows that the SDDA algorithm exhibited
good detection accuracies with a high average DCR of 83.10% and NCR
of 95.12% and an overall low ER and MR of 4.88% and 16.90%,
respectively. The overall accuracy is also usually affected by clouds,
especially broken clouds and thin clouds over bright surfaces. The vali-
dation and comparison results showed that the SDDA algorithm is robust
and can better monitor dust storms under different surface and atmo-
spheric conditions.

5. Conclusions

In this paper, a new Simplified Dust Detection Algorithm (SDDA) for
Suomi NPP Visible infrared Imaging Radiometer (VIIRS) was studied.
First, the areas of dust and non-dust (e.g., thick cloud, thin cloud, bare
land, Gobi, vegetation) were selected from different time phase images
between 2012 and 2016 to construct the top-of-atmosphere reflectance
and brightness temperature training samples. The differences of radia-
tion characteristics between different surface features and dust were
analysed by calculating the mean and variance of the samples. Then, the
cloud, ice/snow, bright/dark surface masking rules were established
based on fixed thresholds among selected reflectance and temperature
brightness channels. Finally, the radiation characteristics of the thin
cloud and dust in the bright temperature channels were analysed to
realize dust detection over the land surface.

To verify the authenticity of the dust detection results, the dust
detection results were validated by MICAPS (Meteorological Information
Comprehensive Analysis and Process System) dust ground measurements
and OMI AI products. Based on the time differences, the dust detection
results showed a deviation. However, the overall results show that the
dust detection algorithm can effectively realize the automatic detection
of thin and thick dusts over both dark and bright surfaces, with a high
overall average Dust-station Correct Rate (DCR) of 83.10% and a low
Error Rate (ER) of 4.88%. Additionally, the SDDA shows good applica-
bility over the land surfaces in the study area because it is established
based on the analysis of a large number of pixel database training

samples. However, in the future, the seasonal changes need to be care-
fully considered, and the quantitative verification of dust monitoring
results needs be improved.
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