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A B S T R A C T   

The location and layout of enterprises have an important impact on local air quality. However, a few studies on 
exploring of the optimal layout of gas-related enterprises from the perspective of optimizing the layout of air 
pollution sources. This study developed a method for the evaluation of air pollution source layout based on air 
pollutant emission inventory data, atmospheric self-purification capacity data, and satellite remote sensing air 
quality data. Taking Shaanxi Province as an example, the Moran’s I index and GIS spatial analysis techniques 
were used to evaluate the layout of air pollution sources, analyze the spatial variation characteristics of air 
pollution sources, and propose specific countermeasures to optimize the layout of air pollution sources. Results 
showed that northern Shaanxi and Guanzhong Plain are the most unsuitable for the distribution of NOx and CO 
sources, accounting for 13.78% and 21.77% of the total area, respectively. The most suitable area for the dis
tribution of NOx is southern Shaanxi, accounting for 65.77% of the total area, mainly concentrated in Hanzhong 
and Ankang regions. The most suitable area for the distribution of CO is southern Shaanxi, accounting for 40.97% 
of the total area, mainly concentrated in Hanzhong and Shangluo regions. The findings of this study could 
supplement and improve the evaluation of the layout of industrial enterprises in China from technical and 
methodological aspects, and provide new insight for local governments to adjust and optimize the layout of air 
pollution sources.   

1. Introduction 

In recent years, air pollution in China became a major economic and 
social issue across the country due to rapid economic growth, acceler
ated industrialization, and rapid urbanization (Li et al., 2022; Wang 
et al., 2022a). The reason was attributed to the influence of local in
dustrial structure, layout, and energy consumption, especially in the 
rapidly growing industrial cities (Yang and Teng, 2018; Xue et al., 
2023). For example, Linyi, as the logistics plate capital of China, had a 
significant impact on the local non-methane hydro-carbon (NMHC) 
concentration and formation of O3 due to the significant differences in 
industrial structure and geographical location (Wang et al., 2022b). 
Yang (2022) explored the impact of industrialization on environmental 
pollution in different provinces of China, and the results showed that 

industrial layout had an impact on environmental pollution (Yang, 
2022). Obviously, the long-term industrial development not only pro
moted economic growth but also produced a large number of industrial 
pollutants, causing serious damage to the ecological environment (Ji 
et al., 2021; Li et al., 2022). Therefore, it is very important to take 
appropriate methods to accurately identify pollution sources, and then 
rationally plan the layout of heavy polluting enterprises for reducing air 
pollution and improving the image of the city. 

At present, most research focused on pollutant control technologies 
and emission reduction strategies to achieve air quality improvement 
and environmental restoration. The essence of those approaches was to 
control air quality by reducing pollutant emissions. Another approach 
was to optimize the layout of air pollution sources, thereby taking 
advantage of the dilution and purification characteristics of the 
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atmosphere to reduce the harm of air pollution, and avoid the economic 
losses associated with reducing emissions to some extent, which was 
substantial to heavily polluted cities for the adjustment of the industrial 
layout. Various methods were adopted to consider pollutant emissions in 
existing systems for the evaluation of pollution source layout. From the 
meteorological perspective, previous studies mainly selected improved 
layout schemes based on traditional analysis of prevailing winds or the 
results of simple models (Zhu et al., 2022; Mo et al., 2023). Other studies 
combined air pollutant emission inventories and air quality models to 
research the impact of pollutants on the atmospheric environment under 
different planning scenarios, thereby providing a strategy for the opti
mization of enterprise layout (Tang et al., 2019). Additionally, the 
technique of satellite retrieval had unique advantages in assisting 
pollutant accounting, which has been proven helpful in guiding the 
optimized layout of enterprises (Alvarez-Mendoza et al., 2018; Biuki 
et al., 2022). However, those earlier studies relied on a single dataset 
and had certain limitations for compromising the scientific optimization 
of enterprise layout. Furthermore, most current studies used meteoro
logical or emission inventories combined with air quality models to 
explore the optimal layout for a particular business or industry. How
ever, for a city, it is necessary to systematically explore the optimal 
layout of enterprises in the whole city from the perspective of the whole 
city. Therefore, from the perspective of cities, multi-source data such as 
atmospheric self-purification capacity data, satellite remote sensing air 
quality data, and pollutant emission inventory data should be compre
hensively considered to objectively reflect the current situation of air 
pollution under the existing layout of air pollution sources, and provide 
references for the layout and location of enterprises. 

Shaanxi was an economically important province in Northwest 
China. Its gross domestic product (GDP) reached 218.981 billion yuan in 
2017, and the output value of its secondary industry accounted for 
49.8% of the total output value (National Bureau of Stastics of China 
Published NBSC, 2018). Shaanxi has made notable contributions to the 
formation of a complete national economic system and socioeconomic 

development in China owing to its relatively complete heavy industry 
sector. However, the excessive development of heavy industry has 
brought substantial environmental pollution. Therefore, the research 
was devoted to resolving Shaanxi’s air pollution issues and providing 
possible solutions which could contribute to easing the pressure of 
environmental management. This study was based on multi-source data 
(BUCT, 2023) for air pollution source layout optimization. Furthermore, 
this study analyzed the current situation of the layout of regional air 
pollution sources, evaluated the spatial variation characteristics of air 
pollution sources, and proposed targeted adjustment countermeasures 
for air pollution source layout. This study’s findings would contribute to 
improving the method for evaluating China’s industrial layout, and 
provide reference for relevant authorities regarding enterprise 
management. 

2. Materials and methods 

2.1. Study area 

Shaanxi is in the hinterland of China (31◦42′–39◦35′N, 
105◦29′–111◦15′E) and represents an important node in the “Belt and 
Road” strategy. The study area includes 10 prefecture-level cities 
(Fig. 1), covering a total land area of about 20.56 × 104 km2 (Shaanxi 
Provincial Bureau of Statistics Published, 2018). In 2018, according to a 
study on air quality in 169 major cities in China, the cities of Xi’an and 
Xianyang in Shaanxi ranked in the bottom 20 in terms of air quality 
(MEEP, 2018). Due to factors such as terrain and atmospheric 
self-purification ability, there are five cities and two districts in Shaanxi 
province in the air pollution transmission corridor of Fen-Wei Plain re
gion. The topography of Shaanxi was complex and can be divided into 
three categories from the south to the north, including southern Shaanxi 
Qinling Bashan Mountains (Hanzhong, Ankang, and Shangluo), central 
Shaanxi Guanzhong Plain (Baoji, Xi ‘an, Xianyang, Tongchuan, Weinan, 
and other cities) and northern Shaanxi Loess Plateau (Yulin and Yan 

Fig. 1. Geographical location of the study area.  
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‘an). Besides, Shaanxi spanned three different climatic zones, and the 
marked variation in climate from the north to the south results in the 
distinct difference in the self-purification capacity of the atmosphere in 
the different zones. 

2.2. Data description 

This study used three datasets (high-resolution pollutant emission 
inventory data, atmospheric self-purification capacity data, and satellite 
remote sensing air quality data) to establish the air pollution source 
optimization layout model for Shaanxi Province, and the structure, 
resolution, and format of the data were optimized and processed as 
described in subsections 2.2.1–2.2.3. 

2.2.1. Atmospheric self-purification capacity data 
Atmospheric self-purification capacity is a comprehensive repre

sentation of the inherent ability of the atmosphere to disperse, dilute, 
and deposit atmospheric pollutants, which has nothing to do with the 
emission of atmospheric pollution sources. Therefore, it can be used to 
quantify the contribution of changes in meteorological conditions to 
atmospheric pollution and to evaluate the effectiveness of air pollution 
control measures. Furthermore, it plays a key role in the prediction of 
the future potential of air pollution, providing a basis for early imple
mentation of air pollution control measures (Chen et al., 2020b). 

The atmospheric self-purification capacity data used in this study 
were obtained from the Local Analysis and Prediction System National 
Weather Service high-resolution (3-km grid) data compiled by the 
Public Weather Service. The data covered the region of 11◦–54◦N, 
60◦–140◦E. Key data elements included hourly total cloudiness, low 
cloudiness, u-component wind speed at 10-m height, v-component wind 
speed at 10-m height, and 1-h accumulative precipitation (Bo et al., 
2019). The calculation method used in this study referred to the Na
tional Standard of the People’s Republic of China (GB/T 34,299–2017) 
(CMA, 2017), and the evaluation of the atmospheric self-purification 
capacity index (A) is accomplished using the following formula. The 
average atmospheric self-purification capacity index of Shaanxi Prov
ince in 2018 was calculated. 

A = 3.1536 × 10− 3 ×

̅̅̅̅
Π

√

2
× V + 1.7 × 10− 2 × R ×

̅̅̅
S

√ (1)  

where V is the ventilation volume (unit: m2/s), R signifies precipitation 
intensity (unit: mm/d), and S means the unit area (unit: 100 km2). The 
specific calculation steps are as follows:  

① Firstly, the sun altitude Angle at each grid observation time is 
calculated; 

②According to the total cloud cover/low cloud cover and solar 
altitude Angle, the solar radiation level is obtained by looking up the 
table;  
③ According to the surface wind speed (calculated by the u 

component of the wind speed at 10 m high and the v component 
of the wind speed at 10 m high) and the solar radiation level, the 
Pasquill atmospheric stability level is obtained from the table;  

④ Calculate the height of the mixed layer according to the level of 
atmospheric stability. Firstly, the region sequence number is 
determined according to the province where Shaanxi province is 
located, and then the thermal mixed layer coefficient a or me
chanical mixed layer coefficient b of the region’s serial number is 
obtained under different atmospheric stability levels by looking 
up the table, and the height of the mixed layer is calculated ac
cording to the following formula. 

The height Lb of the thermal mixing layer is calculated under un
stable and neutral meteorological conditions (the level of atmospheric 
stability for A, B, C, and D). The calculation formula is as follows: 

Lb = a ×
u10

f (2)  

f = 2Ω sinφ (3)  

Where a is the coefficient of the hermal mixed layer; u10 is the average 
wind speed at a height of 10 m, expressed in meters per second (m/s). If 
it is greater than 6 m/s, the value is set to 6 m/s. f is the geostrophic 
parameter, expressed in degrees (◦); Ω is the angular speed of the Earth’s 
rotation, expressed in degrees per second (◦/s). φ is geographical lati
tude in degrees (◦). 

The mechanical mixing layer height is calculated under stable 
meteorological conditions (when the atmospheric stability is E and F), 
and the calculation formula is as follows: 

Lb = b ×

̅̅̅̅̅̅
u10

f

√

(4)  

Where b is the coefficient of mechanical mixing layer.  

⑤ Calculate the wind speed at a height of 200 m according to the 
atmospheric stability and wind speed at a height of 10 m; 

The average wind speed at the height of 10 m of the meteorological 
station is taken as the starting point, the wind speed below 200 m in
creases with the height according to the exponential law, and the wind 
speed above 200 m until the top of the mixing layer is taken as a con
stant, that is, the wind speed formula below 200 m is shown in the 
following formula: 

u = u10 ×
( z

10

)pm
(5)  

Where Z is the height in meters (m); u10 is the average wind speed at a 
height of 10 m, expressed in meters per second (m/s); When the value is 
greater than 6 m/s, it is 6 m/s. Pm is the Profile index of the vertical 
distribution of wind speed corresponding to different atmospheric sta
bility, see Table 1, the classification of atmospheric stability, see Ap
pendix B of the National Standard of the People’s Republic of China (GB/ 
T 34,299–2017).  

⑥ Calculate the ventilation volume according to the height of the 
mixing layer, the wind speed at the height of 200 m and the wind 
speed at the height of 10 m; 

When the height of the mechanical mixing layer is less than 200 m, 
the ventilation volume is calculated using the following formula: 

VE = (u200 + u10) × 0.5 × Lb (6)  

Where VE is the Ventilation volume, in square meters per second (m2/s); 
u200 is the wind speed at an altitude of 200 m, in meters per second (m/ 
s); u10 is the wind speed at altitude of 10 m, expressed in meters per 
second (m/s); Lb is the thermal or mixed layer height, in meters (m). 

When the height of the thermal or mechanical mixing layer is more 
than 200 m, the ventilation volume is calculated using the following 
formula: 

VE = 200 × (u200 + u10) × 0.5 + (Lb − 200) × u200 (7)  

Where VE is the ventilation volume, in square meters per second (m2/s); 
u200 is the wind speed at an altitude of 200 m, in meters per second (m/ 

Table 1 
Profile indices corresponding to different atmospheric stability.  

Atmospheric stability classification A B C D E F 

Profile index 0.07 0.07 0.1 0.15 0.25 0.25  
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s); u10 is the wind speed at altitude of 10 m, expressed in meters per 
second (m/s); Lb is the thermal or mixed layer height, in meters (m).  

⑦ Calculate the atmospheric self-purification capacity index and 
grade of each time according to the calculation formula of at
mospheric self-purification capacity index. 

2.2.2. Satellite remote sensing air quality data 
The satellite remote sensing air quality data with high quality and 

high resolution used in this study were collected from the ChinaHigh
AirPollutants (CHAP) dataset (Wei et al., 2022; Wei et al., 2023). This 
dataset was generated from big data that integrate ground-based ob
servations, satellite remote sensing products, atmospheric reanalysis, 
and model emission inventories to infer surface concentrations of par
ticulate and gaseous air pollutants using artificial intelligence technol
ogy. This study employed the surface NO2 and CO data at a spatial 
resolution of 10 km × 10 km (Wei et al., 2022; Wei et al., 2023). In 
subsequent studies, it was divided into a grid with a resolution of 3 km 
× 3 km. 

2.2.3. Pollutant emission inventory 
A pollutant emission inventory represents the quantitative charac

terization of various pollutants discharged into the atmosphere by 
pollution sources within a certain temporal span and over a certain 
spatial range. A high-resolution air pollutant discharge inventory rep
resents the basic data of air quality management, and such information 
was vital to the study of air pollution formation mechanisms, pollution 
control strategies, air quality early warning, and prediction. 

The method adopted in this study for the compilation of the pollutant 
emission inventory referred to the high-resolution emission inventory of 
Hainan Province in 2017, as described in our previous research (Xu 
et al., 2023). The spatial resolution of the inventory is 3 km × 3 km and 
the emission sources are subdivided into fossil fuel combustion sources, 
process sources, solvent use sources, on-road mobile sources, non-road 
mobile sources, agricultural sources, dust, storage, and transportation 
sources, and waste treatment sources. The data source referred to the 
“three lines one permit” of Shaanxi Province compiled in previous 
research (Chen et al., 2020a). The dataset includes 7 pollutants: SO2, 
NOx, CO, PM10, PM2.5, VOCs, and NH3. The compiled pollutant emission 
inventory of Shaanxi Province comprehensively and objectively reflects 
the current air pollution situation, and supports research on regional air 
pollution sources, pollution formation mechanisms, and air pollution 
prediction, thereby providing a reference for air pollution prevention 
and control strategies, and formulation of pollution control measures. 

2.3. Distribution model of atmospheric pollution sources based on multi- 
source data 

2.3.1. Spatial autocorrelation analysis of pollutants emission source 
Spatial autocorrelation analysis was performed to understand the 

spatial dependence of the different types of datasets. Spatial correlation 
referred to the calculation of the degree of spatial autocorrelation be
tween a spatial unit and its surrounding units for a certain eigenvalue, 
through the application of statistical methods to analyze the charac
teristics of the spatial distribution of the spatial units (Song et al., 2020; 
Shi et al., 2023). The Moran’s I index has been widely used in spatial 
autocorrelation analysis (Zhang et al., 2008; Zhao et al., 2022). The 
value of Moran’s I index was between − 1 and + 1. A value of the 
Moran’s I index of >0 indicated that high (low) values were clustered 
together with other high (low) values, and thus the data present positive 
spatial autocorrelation. Conversely, a value of the Moran’s I index of 
<0 indicated that high values are clustered together with low values, 
and thus the data presented negative spatial autocorrelation. A value of 
the Moran’s I index close to 0 signified that high and low values were 
distributed randomly and exhibit no spatial autocorrelation. The Mor
an’s I index can be divided into a global index and a local index. The 

global Moran’s I index was used to indicate whether attribute values are 
clustered in space, and the local Moran’s I index further indicated the 
clustering area of high or low attribute values. The specific calculation 
methods for the global and local indexes are as follows: 

I =
n ×

∑n

i=1

∑n

j=1
wi,j(xi − x)

(
xj − x

)

∑n

i=1

∑m

j=1
wi.j ×

∑n

i=1

(
xi − xj

)2
(8)  

IL =

n × (xi − x)
∑n

j=1
wi,j

(
xj − x

)

∑n

i=1

∑m

j=1
wi.j ×

∑n

i=1

(
xi − xj

)2
(9)  

where I is the global Moran’s I index; IL is the local Moran’s I index; xi 
and xj signify the attribute values at locations i and j, respectively; x is 
the average of the attribute values at all points i and j; n denotes the 
number of all study objects; and wij represents the weight assigned to 
each raster measurement cell. 

The significance test of the calculated Moran’s I index was performed 
using the Z-distribution and it was determined as follows: 

Z =
I − E(I)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
VAR(I)

√ (10)  

where Var(I) is the variance of the global Moran’s I index, and E(I)
signifies the expected value of the global Moran’s I index. When |Z| >
2.58, it means that the element has a significant aggregation or disper
sion characteristic in the 99% confidence interval; otherwise, it is 
distributed randomly. 

2.3.2. Assessment of the layout of atmospheric pollution sources 
Based on natural factors such as meteorological diffusion conditions 

and the geographical features of Shaanxi, combined with pollutant 
emission intensity and satellite remote sensing air quality data, this 
study identified areas where the layout of pollution sources might have a 
serious impact on regional air quality and determined evaluation criteria 
of air pollution sources. Furthermore, three different datasets were 
processed and graded according to certain proportions; datasets with 
proportions of 0%–33%, 33%–67%, and 67%–100% were defined as a 
large class, medium class, and small class, respectively. Grids that met 
the requirements of large atmospheric self-cleaning capacity data, small 
pollutant emission inventory data, and small satellite remote sensing air 
quality data were classified as grids with better atmospheric capacity, 
which were considered most suitable for enterprise layout and could 
accommodate more atmospheric pollution sources (e.g., factories, in
dustrial parks, and traffic sources). Conversely, grids that met the re
quirements of small atmospheric self-cleaning capacity data, large 
pollutant emission inventory data, and large satellite remote sensing air 
quality data were classified as grids with poor atmospheric capacity, 
which were considered unsuitable for the layout of enterprises and un
able to accommodate more atmospheric pollution sources. The 
remaining grids were defined as those with general atmospheric envi
ronmental capacity (Table S1). 

3. Results and discussion 

3.1. Spatial distribution characteristics 

3.1.1. Current status of pollutant emissions in cities 
The spatial distributions of high-value regions of CO and NOx were 

mainly concentrated in the Guanzhong Plain area, and Yulin City in 
northern Shaanxi, and overlapping features existed in most sites, indi
cating that NOx and CO were spatially homogeneous (Fig. 2). The NOx 
and CO emissions in Guanzhong accounted for 49.2% and 48.05% of the 
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Fig. 2. Spatial emission distribution characteristics of (a) CO and (b) NOx at 3 km × 3 km resolution in Shaanxi in 2017.  

Fig. 3. (A) Distribution map of atmospheric self-purification capacity index in Shaanxi Province in 2018 (b) distribution of weak atmospheric dispersion zones 
superimposed on the terrain of Shaanxi Province. 
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total in Shaanxi, respectively, and Yulin’s NOx and CO emissions 
accounted for 32.09% and 29.24% of the total, respectively (Table S2). 
Fossil fuel combustion sources contributed a significant amount of NOx 
emissions (45.05% of the total NOx emissions), which was followed by 
mobile sources (35.60%). Fossil fuel combustion sources were also the 
largest contributor to CO emissions, accounting for 43.39% of total CO 
emissions, followed by industrial process sources (32.89%), and mobile 
sources (22.57%) (Table S3). Furthermore, NOx emissions were mainly 
from power plants, accounting for 60.72% of the total emissions. The 
majority of CO emissions came from mining and manufacturing, which 
accounted for 53.65% of total emissions, followed by power plants 
(21.84%) (Table S4) (Wang, 2020). 

3.1.2. Status of atmospheric self-purification capacity index 
Based on the mean value of atmospheric environment diffusion index 

in Shaanxi Province in 2018, the grid or region with small atmospheric 
environment diffusion index value is selected as the weak atmospheric 
environment diffusion region according to certain threshold value or 
proportional value. Since there is no uniform threshold standard for 
weak diffusion, different proportions such as 10%, 15%, 20%, 25% in 
reverse order of atmospheric diffusion index can be used as the basis for 
the classification of weak diffusion in atmospheric environment (Zhu 
et al., 2018; Chen et al., 2020b). In this study, the atmospheric weak 
diffusion zone is defined by 20% of the atmospheric diffusion index 
ranking in reverse order of Shaanxi Province. The distribution of the 
atmospheric self-purification ability index and the atmospheric weak 
diffusion zone of Shaanxi Province in 2018 are shown in Fig. 3. Areas of 
weak diffusion of the atmospheric environment were mainly distributed 
over plains, basins, river valleys, leeward slopes of foothills, and other 
low-elevation areas, mainly in the range of 200–1000 m. The main 
reason was attributed to Shaanxi’s complex topography, including the 
Beishan Mountains, Qinling Mountains, Daba Mountains, and other 
major mountain ranges. There was a large relative topographic differ
ence between the plains and basins in the valley bottoms and the 
mountains that form a curtain that has an obvious blocking effect on 

airflow, thereby promoting the formation of areas of low wind speed in 
Guanzhong Basin, Hanzhong Basin, and some areas of the northern 
Shaanxi Plateau (Xu et al., 2017). Moreover, the mountains restrict the 
ventilation diffusion and flow transport capacity of the atmosphere, thus 
forming weak diffusion zones of the atmospheric environment. 

3.1.3. Current status of satellite remote sensing data 
Satellite remote sensing data of CO and NOx in Shaanxi are displayed 

in Fig. 4. Areas of poor air quality were distributed over the Guanzhong 
Plain area and in northern Shaanxi (especially Yulin City), consistent 
with the analysis results shown in Fig. 2. Possible explanations for this 
distribution could be ascribed to the following. Firstly, the Guanzhong 
area had high population density (Fig. S1), high traffic flow (Fig. S2), 
and intense industrial activities, with population, vehicles, and GDP 
accounting for 63%, 74%, and 65% of the total in Shaanxi Province, 
respectively (Table 2), even though its area accounts for only 27% of the 
total area of Shaanxi Province. Secondly, Guanzhong Plain was within 
the weak atmospheric dispersion zone in Shaanxi, with serious emis
sions of atmospheric pollutants and relatively poor air quality, as 
mentioned earlier. Thirdly, northern Shaanxi was the base of the large- 
scale energy and chemical industry in the region, and it had played a 
vital role in the west–east coal transportation, west–east electricity 
transportation, and west–east gas transportation projects. Owing to the 
long-term dominance of industrial sources and the high emission of 
pollutants in northern Shaanxi, the satellite remote sensing data indi
cated that the air quality is poor, especially in Yulin City. 

3.2. Correlation analysis 

3.2.1. Univariate correlation analysis 
Multi-source data (satellite remote sensing air quality data, pollutant 

emission inventory data, and atmospheric self-purification capacity 
data) were classified and sorted, and GeoDa software (version 1.18.0) 
was used to calculate the univariate Moran’s I index of NOx and CO. The 
NOx and CO of these three datasets showed significant correlation at the 

Fig. 4. Satellite remote sensing data map of 3km × 3 km of CO and NOx in Shaanxi.  
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level of P < 0.001; the Z scores were all >2.58, and the Moran’s I index 
values were positive (Table 3). Thus, the distributions of NOx and CO in 
the study area had clustering characteristics. The significance test of the 
univariate Moran’s I index analysis signified statistical significance, 
which provided a theoretical basis for subsequent bivariate Moran’s I 
index analysis. 

3.2.2. Bivariate correlation analysis 
In order to reflect the correlation between the satellite remote 

sensing dataset and the atmospheric self-purification capacity dataset 
more accurately, an adjacency spatial weight matrix was constructed 
using GeoDa software (version 1.18.0), and bivariate local Moran’s I 
index analysis was conducted. The clustering types included the high 
values of atmospheric self-purification capacity data and the high values 

of satellite remote sensing air quality data (H–H), the low values of at
mospheric self-purification capacity data and the low values of satellite 
remote sensing air quality data (L-L), the high values of atmospheric self- 
purification capacity data and the low values of satellite remote sensing 
air quality data (H-L), and the low values of atmospheric self- 
purification capacity data and the high values of satellite remote 
sensing air quality data (L-H). Types H–H and L-L both denoted a region 
with the same data attributes as its surroundings, whereas types H-L and 
L-H both denoted a region surrounded by a region with different data 
attributes, and they were used to detect spatial heterogeneity. 

The high level of satellite remote sensing air quality data was found 
to correlate with the low level of air self-purification capacity data, and 
vice versa. For NOx and CO, H-L type areas were mainly distributed in 
Shaanxi’s central and eastern urban clusters, and L-H type areas were 
mainly distributed in Shaanxi’s northern and eastern urban clusters 
(Fig. 5), corresponding to the analysis results above. 

3.3. Results of classification 

GIS mapping can assess the layout of relevant air pollution sources by 
visualizing spatial patterns (Hao and Shen, 2022). According to the di
vision criteria, Shaanxi was divided into three categories: green, indi
cating areas suitable for enterprise layout (high atmospheric 
environmental capacity), red, indicating areas unsuitable for enterprise 
layout (poor atmospheric environmental capacity), and blue, indicating 

Table 2 
Population, vehicle numbers, and GDP of the ten cities in Shaanxi during 2017.  

City Yulin Yan’an Baoji Xi’an Xianyang Tongchuan Weinan Ankang Hanzhong Shangluo Total 

Area (Thousand square kilometer) 4.29 3.70 1.82 1.01 1.03 0.39 1.30 2.35 2.71 1.96 20.56 
Population (million) 3.38 2.21 3.75 8.63 5.05 0.85 5.34 2.64 3.43 2.35 37.63 
Vehicles (thousand) 510 246 205 1966 271 69 394 94 174 67 3996 
GDP (billion yuan) 262.1 119.9 178.9 581 215.6 32.5 146.9 77.2 99.1 62.2 1775.4  

Table 3 
Univariate Moran’s I index analysis of satellite remote sensing air quality data, 
pollutant emission inventory data, and atmospheric self-purification capacity 
data.  

Dataset Pollutant I P Z 

Satellite remote sensing air quality NOx 0.868 0.00001 260.98 
CO 0.815 0.00001 245.09 

Pollutant emission inventory data NOx 0.032 0.001 13.48 
CO 0.047 0.00046 14.82 

Atmospheric self-purification / 0.933 0.00001 280.58  

Fig. 5. Local indicators of spatial association cluster map of satellite remote sensing air quality data and atmospheric self-purification capacity data of (a) CO and (b) 
NOx in Shaanxi. 
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areas with intermediate suitability for enterprise layout (moderate at
mospheric environmental capacity) (Fig. 6). 

The results showed that the area proportion suitable for NOx pollu
tion sources was the smallest in northern Shaanxi Province (about 
13.78%), and the largest in southern Shaanxi Province (about 65.77%), 
mainly concentrated in Hanzhong and Ankang regions. The area pro
portion unsuitable for NOx pollution sources is Guanzhong Plain (about 
56.49%), followed by northern Shaanxi Province (about 43.5%). The 
proportion of suitable area for CO pollution sources was the smallest in 
Guanzhong Plain (about 21.77%), the largest in southern Shaanxi (about 
40.97%), mainly concentrated in Hanzhong and Shangluo, and the 
proportion of unsuitable area for CO pollution sources was the largest in 
northern Shaanxi (about 45.26%) (Table S5). This was consistent with 
the high level of urbanization on the Guanzhong Plain and the intense 
industrialization in Yulin city (northern Shaanxi). This study defined the 
spatial differentiation of environmental function attributes of each re
gion in Shaanxi Province, which could provide new perspective and 
reference for relevant departments to reasonably determine the envi
ronmental quality objectives of subregions. 

4. Conclusions 

Using Shaanxi as a case example, this study innovatively developed a 
method for the layout of air pollution sources based on multi-source 
data. The results showed that the spatial distribution of high concen
trations of CO and NOx were mainly concentrated in Guanzhong Plain 
and Yulin City in northern Shaanxi Province. The NOx and CO emissions 
in Guanzhong area accounted for 49.2% and 48.05% of the total amount 
of Shaanxi Province, respectively, and the NOx and CO emissions in 
Yulin City accounted for 32.09% and 29.24% of the total amount of 
Shaanxi Province. Fossil fuel combustion source was the largest 
contributor to NOx and CO emissions. The correlation analysis of the 
Moran’s I index suggested that the emission source intensity of both NOx 
and CO in Shaanxi was consistent with the trend of variation in pollutant 

concentration determined from satellite remote sensing data. Overall, 
the largest proportions of areas suitable for the layout of NOx and CO 
pollution sources were in southern Shaanxi, accounting for 65.77% and 
40.97% of the total, respectively, indicating that southern Shaanxi areas 
were most suitable for the layout and site selection of enterprises. 

The evaluation method based on the air pollutant emission inventory 
data, atmospheric self-purification capacity data, and satellite remote 
sensing air quality data was established, and it can more objectively 
reflect the current situation of air pollution under the air pollution 
source layout. The application of the proposed evaluation method could 
reduce not only the unreasonable distribution of existing industry and its 
negative impact on the environment but also the unreasonable re
strictions of existing evaluation systems on local economic development, 
thereby improving local economic benefits. 
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