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A B S T R A C T   

Particulate matter (PM) is a major source of urban air pollution that poses a serious threat to the environment 
and human health. This study quantified the dry deposition effect of PM2.5 and PM10 on vegetation using a 
mathematical model to overcome the limitations of traditional site-scale research. Additionally, multi-source 
satellite remote sensing products were combined to form a raster dataset to estimate the effect of dry deposi-
tion on PM2.5 and PM10 in China’s urban green spaces from 2000 to 2020. The spatial and temporal changes in 
the long-term series were analyzed, and the influence of environmental factors on dry deposition was analyzed in 
combination with wavelet changes. The experimental results showed that: 1) from 2000 to 2020, the dry 
deposition effect of PM2.5 and PM10 on vegetation showed an initial increasing and then decreasing trend caused 
by the sudden drop in atmospheric pollutant particle concentration driven by local policies; 2) broad-leaved 
forests provided the main dry deposition effects in urban spaces, accounting for 89.22 %, indicating a need to 
increase the density of these forest types in urban development planning to improve air quality; and 3) PM2.5, 
PM10, and environmental impact factors have time-frequency scale coherences, and the coherence between PM2.5 
reduction and these factors is more complex than that of PM10, with precipitation being the best variable to 
explain the change in PM2.5 and PM10. These findings are important for the prevention and control of urban air 
pollution, regional planning of green spaces, and sustainable development of cities.   

1. Introduction 

Due to the rapid rise of regional industrialization, urbanization, and 
economic growth, air pollution has significantly increased, thereby 
impeding the sustainable development of urban ecosystems. The in-
crease in air pollution poses a significant risk of respiratory and car-
diovascular diseases, while also altering regional climate and 
meteorological phenomena. Therefore, it is imperative to implement 
measures to prevent and control air pollution (Schwartz et al., 1996; Tai 
et al., 2010; Wang et al., 2020; Rahman et al., 2022). Particulate Matter 
(PM) encompasses solid or liquid particles such as dust, soot, and 
chemicals that become suspended in the air. These particles enter the 
atmosphere through industrial emissions, automobile exhaust, and 
agricultural and residential activities (Viana et al., 2008; Dominici et al., 

2014). PM represents a crucial component of urban air pollution 
(Beckett et al., 1998; Yang et al., 2005; Shah et al., 2022). The devel-
opment of cities has raised significant environmental concerns regarding 
the reduction of PM emissions. Urban green spaces, comprising both 
artificial and natural green vegetation coverage within urban areas, 
including forest parks, river wetlands, and street green belts, play a 
crucial role in purifying the air in urban environments (Wu et al., 2012; 
Xie et al., 2017; Zhai et al., 2022a, 2022b). Air purification is either 
achieved by the direct interception and absorption of PM by vegetation 
through retention, attachment, and adhesion, or by changing meteoro-
logical factors such as wind fields. The dust retention effect is influenced 
by the canopy structure, growth stage, and leaf roughness of plants 
within the green space (Zhao et al., 2013; Chen et al., 2014; Fan et al., 
2015; Zhai et al., 2022c). 
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The process of vegetation directly reducing atmospheric PM is 
known as dry deposition. However, accurately estimating this process 
using simple empirical mathematical relationships poses challenges 
(Pretzsch et al., 2015; DeJarnett et al., 2016). Early models predomi-
nantly relied on simplistic estimations of dry deposition processes by 
primarily considering theories in aerodynamics and micrometeorology. 
These models neglected the impact of plant structural characteristics 
and species variations, while also insufficiently quantifying several pa-
rameters (Davidson et al., 1982; Slinn, 1982). As research on dry 
deposition progresses, more advanced models have been developed, 
notably the widely utilized ENVI-met and Urban Forest Effects (UFORE) 
models (Hirabayashi, 2011; Velásquez Ciro et al., 2021). The ENVI-met 
model is a three-dimensional hydrodynamic model that effectively 
simulates the interaction among the subsurface, vegetation, and atmo-
sphere. It is commonly employed for simulating urban microenviron-
ments and assessing the effects of green spaces (Bruse and Fleer, 1998). 
In a study conducted by Vos et al. (2013) using ENVI-met, the effect of 
roadside green belt structure on atmospheric quality was investigated. 
The study indicated a positive correlation with depression and a nega-
tive correlation with permeability, although the underlying mechanism 
concerning vegetation remained unclear. The UFORE model, developed 
by the Northeast Forest Research Centre of the United States Department 
of Agriculture (USDA) in the 1990s, offers the capability to quantita-
tively assess the structure and function of urban green spaces. It can be 
applied to areas of any size both urban and non-urban, thereby 
providing valuable insights (Nowak, 2021; Nowak and Crane, 2000; 
Pace et al., 2021). The model integrates various parameters such as leaf 
area, pollutant concentration, and dry deposition, using measurements 
or remote sensing. It incorporates factors such as wind speed (WS) and 
precipitation (PRE) and optimizes the different pollutants and vegeta-
tion characteristics, thereby ensuring highly accurate calculation results 
(Hirabayashi, 2011; Nowak and Crane, 2000). The model combines 
various parameters to simulate the physical processes of pollutant 
deposition, avoiding the limitations of traditional methods that rely on 
empirical parameters specific to different locations (Nowak et al., 
2014a). To address the complexity of component interactions, Guido-
lotti et al. proposed the EMEP MSC-W model to reduce the dry deposi-
tion per tree and compared its results with those of the UFORE model. 
The comparison revealed a consistent trend between the two models, 
although it is worth noting that they are still limited by the fact that 
large-scale estimates are limited due to the availability of on-site data 
(Guidolotti et al., 2016). 

These models undergo constant updates and iterations to keep pace 
with advancing technology and expanding research requirements. One 
major trend is their integration with other methods. For instance, the 
USDA has combined the dry deposition module of UFORE with a 
Geographic Information System (GIS) to form the i-Tree model. This 
model quantifies the contribution of urban green spaces by combining 
spatially referenced raster data from multiple sources, including atmo-
spheric pollutants, thus overcoming the limitations of previous models 
that homogenize parameters such as meteorology data and pollutant 
concentrations (Nowak, 2021). Yin et al. utilized the UFORE to evaluate 
the dust retention levels of individual trees and plots in 176 urban parks. 
They analyzed parameters such as tree coverage, species richness, and 
average crown width (Yin et al., 2022). Gong et al. (2021) employed 
bistable isotopes and the UFORE to accurately evaluate the NOx 
reduction of four types of trees (Sophora japonica, Fraxinus chinensis, 
Populus tomentosa, and Juniperus chinensis). Their study highlighted the 
vital role of urban green spaces in urban development and management 
(Gong et al., 2021). Nowak et al. estimated air pollutant levels, including 
PM2.5 and PM10, and the impact of dry deposits in forests and shrubs 
across 55 urban areas of the United States in 1994. Their findings 
demonstrated a total reduction of 711,000 tons with an estimated eco-
nomic value of USD 3.8 billion, underscoring the irreplaceable economic 
and ecological value of dry deposition (Nowak et al., 2006; Nowak et al., 
2018; Gong et al., 2022). 

Although numerous studies have estimated the impact of dry depo-
sition on atmospheric PM in urban green spaces (Table 1), most have 
relied on on-site data. Conducting continuous analyses over extended 
periods and at large regional spatial scales poses challenges, resulting in 
limited comprehensive studies being conducted on different regions in 
China. Hence, this study aimed to analyze the spatial and temporal 
changes in PM2.5, PM10, and the dry deposition effects of vegetation in 
China from 2000 to 2020. The analysis utilized the UFORE model, multi- 
source satellite remote sensing data, and wavelet coherence (WC) to 
investigate the relationship between multiple factors and dry deposition. 
The findings of this study hold significant implications for mitigating 
urban air pollution, guiding regional green space planning, and fostering 
sustainable urban development. 

2. Material and methods 

2.1. Study area 

China is located in East Asia on the west coast of the Pacific Ocean, 
with a land area of approximately 9.6 million km2 and a continental 
coastline of >18,000 km. As shown in Fig. 1, the regional vegetation in 
China has the following characteristics (Qin et al., 2020): 1) it is affected 
by the monsoon climate, and a large area of subtropical, evergreen, 
broad-leaved forest is distributed in the central part; 2) it spans a wide 
range of latitudes and longitudes; hence, the region has forests, shrubs, 
and alpine vegetation or aquatic and other vegetation types; and 3) it 
comprises unique plateau vegetation and an elevation spectrum of 
several peaks in the Qinghai-Tibet Plateau. The effects of vegetation 
cleaning on atmospheric pollutant particles were also explored in the 
study area. Considering the occurrence of dry vegetation deposition, 
only areas with tree heights above 2 m were analyzed, and the results 
were combined with remote sensing data products. A description of the 
reference data is provided in Section 2.2. 

2.2. Experimental data 

In this study, the dry deposition effect of vegetation on atmospheric 
PM2.5 in China from 2000 to 2020 was analyzed. The model in this study 
involved the variables represented in green, and the trend analysis 
involved those represented in yellow (available at Table 2). Data were 

Table 1 
Research status of dry deposition in urban green spaces.  

Number Method Scale Source 
citation 

Limitations 

1 Aerodynamics on-site Davidson 
et al. ( 
Davidson 
et al., 1982) 

Tailored for a specific 
research objective, 
the parameterization 
used in this study is 
inadequate, and its 
applicability is 
narrow. 

2 Micrometeorology on-site Slinn (Slinn, 
1982) 

3 ENVI-met on-site Bruse et al. ( 
Bruse and 
Fleer, 1998;  
Vos et al., 
2013) 

When larger areas are 
involved, the model 
cannot support 
complex scenes and 
the computational 
effort increases. 4 UFORE on-site Nowak et al. 

(Nowak 
et al., 2014a; 
Gong et al., 
2022) 

5 EMEP MSC-W on-site Guidolotti 
et al. ( 
Guidolotti 
et al., 2016) 

6 UFORE + GIS (i- 
Tree) 

Region Zhai et al. ( 
Zhai et al., 
2022a) 

Lack of research on 
the analysis of long- 
term data series.  
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collected using the AI Earth platform, an open and free remote sensing 
big data platform developed by the Alibaba Damo Academy (available at 
https://engine-aiearth.aliyun.com/#/). Descriptions of each input 
parameter required for the estimation model are presented in Table 2. A 
monthly cumulative PM reduction raster dataset with a spatial resolu-
tion of 1 km was created. 

2.2.1. ChinaHighAirPollutants 
The high-resolution and high-quality datasets of ground-level air 

pollutants in China (ChinaHighAirPollutants, CHAP; available at htt 
ps://weijing-rs.github.io/product.html) contain PM, such as PM1 / 
PM2.5 / PM10, and gaseous pollutants, such as SO2, NO2, and O3, and 
were produced by Wei et al. (Wei et al., 2019; Wei et al., 2021a, 2021b; 
Wei et al., 2022; Wei et al., 2023). Considering the spatiotemporal 
heterogeneity of air pollution, the dataset was generated from big data 
(e.g., ground measurements, satellite remote sensing products, atmo-
spheric reanalysis, and model simulations) using an adaptive spatio-
temporal artificial intelligence modeling framework. This approach 
addresses the challenge of missing spatial information in satellite remote 
sensing products and increases data availability by 60 % (Wei et al., 
2023). The time coverage of the dataset is from 2000 to 2021 and in-
cludes four scales: year, month, day, and hour. In this study, monthly 
raster data for PM2.5, PM10, and other air pollutants were used. 

2.2.2. ECMWF_ERA5_LAND 
ERA5_LAND is a product of the European Center for Medium-Range 

Weather Forecasts (ECMWF) Reanalysis Program. It integrates world-
wide observations over several decades into a global dataset using 
physical models and accurately describes past climate change (Muñoz 
Sabater, 2019). The dataset includes approximately 50 parameters, 
including temperature, PRE, albedo, soil, and snow, and provides four 
scales: year, month, day, and hour. Monthly grid data were used for WS, 

which required preprocessing. The [u_component_of_wind_10 m] and 
[v_component_of_wind_10 m] parameters in ERA5_LAND represent the 
surface 10 m wind-speed data based on the east and north. The final 
wind-speed data were obtained via vector synthesis in both directions. 

2.2.3. MOD15A2H 
MOD15A2H is a MODIS L4 product that includes Leaf Area Index 

(LAI), Fraction of Photosynthetically Active Radiation, and corre-
sponding quality control parameters. Its spatial resolution is 500 m and 
its temporal resolution is 8 days (Myneni and Park, 2021). Here, the LAI 
parameters were used and downsampled to a 1 km spatial resolution, 
and a month-scale raster dataset was used to ensure consistency with 
other raster datasets. 

2.2.4. MCD12Q1 
MCD12Q1 is a MODIS L3 product that provides global landcover 

data in six different classifications with a spatial resolution of 500 m and 
a temporal scale of years (Friedl, and MCD12Q1, S.-M.D. v006, n.d.). 
Here, the “Land Cover Type 5: Annual Plant Functional Types” classi-
fication was used, which includes 12 categories, such as evergreen co-
nifers (Table 3). These datasets were downsampled to a spatial 
resolution of 1 km to ensure consistency with the spatial resolution 
scales of the other raster datasets. When the dry deposition flux calcu-
lation was complete, urban green spaces (green content in Table 3) were 
used for mask extraction to remove interference from other feature 
types. 

3. Theory 

The technical route shown in Fig. 2 was used to estimate and analyze 
the dry deposition of atmospheric PM in urban green spaces in China 
from 2000 to 2020. The process could be divided into the following 

Fig. 1. Schematic diagram of the study area.  
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three parts: 1) data preprocessing – vector synthesis, outlier removal, 
and downsampling of the original input data are required to ensure that 
a raster dataset with unified resolution and projection is obtained as the 
input data for subsequent dry deposition estimation; 2) data processing – 
according to the type of atmospheric pollution particles, different dry 
deposition estimation models are selected, and the dry deposition rate 
and monthly flux are estimated; and 3) data analysis – the Sen slope 
analysis + MK nonparametric test algorithm (MK + Sen) is used to 
analyze the dry deposition spatial trend followed by the WC theories to 
analyze the correlation between dry deposition and single- / multi- 
factors and to explain the dry deposition changes. 

3.1. Estimation method of dry deposition on vegetation 

This study primarily focused on the dry deposition estimation 
method in the UFORE model, which was used to estimate the dry 
deposition of pollutants, such as PM2.5 and PM10, and the corresponding 
air quality improvement percentage within a certain time and range 
(Ali-Mohamed and Matter, 1996; Nowak and Crane, 2000; Ali- 
Mohamed, 2004; Li et al., 2014). The model was composed of multiple 
submodules used to quantify species composition and diversity, diam-
eter distribution, tree density and health status, leaf area, leaf biomass, 
and other structural characteristics of forests. Additionally, it can be 
used to calculate the annual hourly volatile organic compound emis-
sions, total carbon amounts stored each year, hourly PM removal in 
urban forests and their economic benefits, and the percentage of air 
quality improvement (Lin et al., 2021). PM reduction was defined as the 
cumulative time value of the product of the dry deposition flux and total 
area of vegetation leaves in the region. The calculation is expressed in 
Eq. (1): 

Rij =
∑n

i=1

∑m

j=1
Fluxij • LAIij (1)  

where Rij represents the annual cumulative particulate reduction 
(reduction) in the ith row jth column pixels on the grid, Fluxij represents 
the dry deposition flux of PM per unit area, and LAIij represents the LAI 
mean of the current pixel obtained from the MOD15A2H product. The 
LAI values of each pixel were directly observed using remote sensing 
data. Accurate estimation of the dry deposition Flux is the key to 
calculating the reduction. 

The dry deposition Flux represents the accumulation of PM under dry 
deposition per unit time and area, and is the product of the dry depo-
sition rate and PM concentration when the total resuspended PM is 
simultaneously removed. This result can be obtained using Eq. (2): 

Fluxij =
∑n

i=1

∑m

j=1
VODij • Conij • t • (1 − s) (2)  

where Fluxij represents the dry deposition flux of PM in the ith row jth 

column pixels on the grid; VODij represents the velocity of dry deposition 
(VOD) on the leaf surface of the current pixel (m⋅s− 1); Conij represents 
the concentration of PM in the current pixel (the unit is g⋅m− 3, obtained 
from the CHAP dataset); t represents the cumulative second of the cur-
rent research scale (the value in the experiment was 30 * 24 * 60 * 60 =
2.592 * 106); and s represents the resuspension rate of PM, which refers 
to the proportion of PM deposited on the leaves returning to the atmo-
sphere and is closely related to the WS. 

For vegetation, the dry deposition rate on the blade surface is defined 
as the reciprocal of the sum of the migration resistance of the particles 
from the blade surface to the interior, which is closely related to 

Table 2 
Datasets used. 

Number Type Dataset name

Temporal

resolution

Spatial resolution

1 Air pollution

China High Air Pollutants (CHAP V4) 

(Wei et al. 2021b)

Month 1 km

2 Wind speed ERA5_LAND (Muñoz Sabater 2019) Month 1 km

3 Leaf area index MOD15A2H (Myneni and Park 2021) Month 500 m

4 Land cover type MCD12Q1 (Friedl and MCD12Q1) Month 500 m

5 Precipitation

Climate Hazards Group InfraRed 

Precipitation with Station data 

(CHIRPS) (Funk et al. 2015)

Month 5 km

6

Normalized 

vegetation Index

MOD13Q1 (Didan 2015) Month 500 m

7

Land surface 

temperature

MOD11A1 (Wan et al. 2015) Month 1 km
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aerodynamics, turbulent boundary layer, canopy resistance, and other 
variables. However, simultaneously obtaining the measured data for 
these variables is difficult in practical scenarios (Baldocchi et al., 1987; 
Nowak et al., 2008). To achieve highly automated batch processing, this 
definition was optimized and different methods were used to calculate 
the dry deposition rate VOD and resuspension rate s of PM2.5 and PM10. 

The dry deposition and resuspension rates of PM2.5 were greatly 
affected by WS. The VOD of >17 tree species has been measured under 
different WS conditions (Beckett et al., 2000; Freer-Smith et al., 2004; 
Pullman, 2008), as shown in Table 4. As the maximum hourly WS in 
mainland China does not exceed 13 m⋅s− 1, Zhai et al. established a 
lookup table of WS, dry deposition, and resuspension rates through 
nearest neighbor measurement interpolation based on previous studies. 
The WS range is 1–13 m⋅s− 1 and the resolution is 1 m⋅s− 1 (Zhai et al., 
2022c). In the absence of sufficient actual observational data, the esti-
mation accuracy of the model can be improved using this table. How-
ever, for the raster data, this table is required to provide a continuous 
functional relationship. Therefore, based on the lookup table, a fitting 
model for WS, dry deposition, and resuspension rates was constructed. 
The results are shown in Fig. 3. 

The particle diameter of PM10 was much larger than that of PM2.5; 

therefore, the dry deposition rate was barely affected by WS and was 
highly affected by tree species. Therefore, spectral indicators observed 
by satellite remote sensing were used to represent the differences in tree 
species characteristics to directly obtain the dry deposition rate change 
(Zhai et al., 2022a, 2022b, 2022c), as shown in Eq. (3). Because of its 
large particle size, the resuspension of PM10 was low; therefore, the 
resuspension rate s in Eq. (2) is 0. 

VODij =
∑n

i=1

∑m

j=1
VODPM10 •

(
BAIPM10 + LAIij

)

(
BAIPM10 + LAIPM10

) (3)  

where VODij represents the dry deposition rate of PM10 in the current 
pixel (m⋅s− 1); VODPM10 represents the average dry deposition rate of 
PM10 under laboratory conditions, with a value of 0.0064 m⋅s− 1; BAIPM10 

represents the bark area index under laboratory conditions, with a value 
of 1.7; LAIPM10 represents the average measured value of LAI under 
laboratory conditions, with a value of 6.0; and LAIij represents the 
average LAI of the current pixel obtained from the MOD15A2H product. 
Reference measurements were obtained from a laboratory (Lovett, 
1994; Tiwary et al., 2009; Zinke, 1967). After obtaining the dry depo-
sition rates of PM2.5 and PM10, the amount of dry deposition during the 

Table 3 
Dataset parameters of land cover types (Friedl and MCD12Q1). 

Value Type Description

0 Water bodies At least 60% of area is covered by permanent water bodies

1 Evergreen needleleaf trees Dominated by evergreen conifer trees (> 2 m); tree cover > 10%

2 Evergreen broadleaf trees Dominated by evergreen broadleaf and palmate trees (> 2 m); 

tree cover > 10%

3 Deciduous needleleaf trees Dominated by deciduous needleleaf (larch) trees (> 2 m); tree 

cover > 10%

4 Deciduous broadleaf trees Dominated by deciduous broadleaf trees (> 2 m); Ttree cover > 

10%

5 Shrub Shrub (1 2 m) cover > 10%

6 Grass Dominated by herbaceous annuals (< 2 m) that are not cultivated

7 Cereal croplands Dominated by herbaceous annuals (< 2 m); at least 60%

cultivated cereal crops

8 Broadleaf croplands Dominated by herbaceous annuals (< 2 m); at least 60%

cultivated broadleaf crops

9 Urban and built-up lands At least 30% impervious surface area, including building 

materials, asphalt, and vehicles

10 Permanent snow and ice At least 60% of the area is covered by snow and ice for at least 

10 months of the year

11 Non-vegetated lands At least 60% of the area is non-vegetated barren (sand, rock, or 

soil) with < 10% vegetation
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temporal range of the study in the experimental area was obtained using 
Eq. (2). 

3.2. Wavelet coherence 

In this study, we used WC to reveal the multiscale synergistic effects 
of multiple factors on dry vegetation deposition. The dry deposition of 
vegetation, PRE, land surface temperature (LST), and other factors 
constitute a complex nonlinear system in the time-frequency domain 

scale. Multilevel-scale structures and local variation characteristics are 
present in this domain. Capturing these multiscale microcharacteristics 
can provide a deeper understanding of the influence of external envi-
ronmental factors on dry vegetation deposition; however, these char-
acteristics remain poorly understood. 

The wavelet function is the focus of wavelet analysis, which refers to 
a class of functions with oscillating rows and can quickly decay to zero; 
that is, the wavelet function is ψ(t) ∈ L2(R), where ψ(τ) is the basic 
wavelet function (Hu and Si, 2021). This definition is expressed in Eq. 
(4): 

ψa,b(t) = |a|− 1
2ψ

(
t–b
a

)

(4)  

where ψa,b(t) are the subwavelets, a is the stretching scale, and b is a 
translation parameter. Therefore, WC in Eq. (5) is expressed as follows: 

Wf(a, b) = |a|− 1
2

∫

R

f(t)ψ
(

t–b
a

)

dt (5)  

where Wf (a, b) is the WC coefficient, f(t) is a signal or square integrable 
function, a is the dilation scale, b is the translation parameter, and ψ

( t− b
a
)

is the complex conjugate function of ψ
( a− b

a
)
. 

The WC is a combination of WC and coherence analyses. In signal 
analysis, a linear relationship or interdependence between variables is 
referred to as coherence. WC is a coefficient used to indicate the local 
similarity of two time series in the time-frequency domain and to 
determine the common change region of these series (Malakar et al., 
2021), as given by Eq. (6): 

R2(s, τ) =
⃒
⃒S
[
s–1Wxy(s, τ)

] ⃒
⃒2

S
[
s–1|Wx(s, τ) |2⋅s–1

⃒
⃒Wy(s, τ)

⃒
⃒2
] (6) 

Fig. 2. Technology roadmap.  

Table 4 
Deposition velocity of PM2.5 by wind speed per unit leaf area (m⋅s− 1) (Beckett 
et al., 2000; Freer-Smith et al., 2004; Pullman, 2008).  

Tree species WS (Wind Speed m⋅s− 1) 

1 3 6 8.5 10 

Quercus petraea   0.00831  0.01757  0.03134  
Alnus glutinosa   0.00125  0.00173  0.00798  
Fraxinus excelsior   0.00178  0.00383  0.00725  
Acer pseudoplatanus   0.00042  0.00197  0.00344  
Psuedotsuga menziesii   0.01269  0.01604  0.0604  
Eucalyptus globulus   0.00018  0.00029  0.00082  
Ficus nitida   0.00041  0.00098  0.00234  
Pinus nigra  0.0013  0.0115   0.1924  0.2805 
Cupressocyparis ×

leylandii  
0.0008  0.0076   0.0824  0.122 

Acer campestre  0.0003  0.0008   0.0046  0.0057 
Sorbus intermedia  0.0004  0.0039   0.0182  0.0211 
Populus deltoides  0.0003  0.0012   0.0105  0.0118 
Pinus strobus  0.000108     
Tsuga canadensis  0.000193     
Tsuga japonica  0.000058     
Maximum value of 

Picea abies  
0.000189     

Minimum value of 
Picea abies  

0.00038      
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where s is the scale; τ is the time; Wx(s,τ) and Wy(s,τ) are the WC of time 
series x and y, respectively; Wxy(s,τ) is the cross WC; Wy(s,τ)* is the 
complex conjugate of Wy(s,τ); and S is a smoothing operator whose 
definition is shown in Eq. (7): 

S(W) = Sscale(Stime(W) ) (7)  

where Sscale and Stime represent the smoothing along the wavelet scale 
and time axes, respectively. The calculation method is expressed in Eqs. 

Fig. 3. Fitting model of PM2.5 dry deposition under different wind speed conditions.  

Fig. 4. Spatial distribution of annual average reference data in China for the year 2000.  
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(8) and (9) as follows: 

Stime(W)|s =
(

Wn(s)⋅c1
t2

2s2

)
|s (8)  

Sscale(W)|s = [Wn(s)⋅c2Π(0.6sec) ]|n (9)  

where c1 and c2 represent normalized constants, Π is a rectangular 
function, and 0.6 is the empirical value of the scale decorrelation length 
of the Morlet wavelet. The guiding relationship between the two time 
series is reflected in the wavelet phase difference (Wu et al., 2022). The 
wavelet phase angle between X and Y is calculated using Eq. (10): 

φ(s) = tan–1( Im
(
Wi

XY(s)
)/(

Re
(
Wi

XY(s)
) )

(10)  

where Im and Re represent the imaginary and real parts of Wi
XY , 

respectively. 

4. Results 

4.1. Analysis of dry deposition temporal and spatial variations 

The assessment of the cleaning capacity of urban green spaces in this 
study was related to several factors, such as air pollutant concentration, 
vegetation, and meteorological factors, which affect the final spatial 
distribution of the dry deposition flux. Regardless of the changes driven 
by multiple factors over the past 2 decades, these input factors have 
common spatial characteristics that significantly impact the results. 
Fig. 4 shows the spatial distribution of the input parameters for each 
model for the year 2000. The main sources of solid PM, such as PM2.5 or 
PM10, are the byproducts of combustion and chemical manufacturing, 

Fig. 5. Estimation of PM2.5 dry deposition in urban green spaces in China from 2000 to 2020. (a)–(t) Spatial distribution of mean seasonal PM2.5 values. (u) 
Corresponding to Fig. (a)–(t), the statistical curve of cumulative dry deposition in each quarter in the west-east direction. 
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which are strongly correlated with the development and distribution of 
urban industries. As shown in Fig. 4(a), central Liaoning, Bei-
jing–Tianjin–Hebei, Urumqi, and other major heavy industrial urban 
agglomerations had the highest PM concentrations. These regions are 
followed by light industrial urban agglomerations, such as Guangdong, 
Hong Kong, Macao, Chengdu, and Chongqing, with distinct spatial dis-
tribution gradient changes. 

Regional urban green spaces in China are primarily affected by 
climate change, human activity, and ecosystem evolution. China is the 
second-largest grassland resource country in the world, but grasslands, 
agricultural land, shrubs, and other vegetation do not contribute to dry 
deposition; therefore, they were not included in the final results. Ever-
green broad-leaved, evergreen coniferous, deciduous broad-leaved, and 
deciduous coniferous trees (accounting for 2.65 %, 9.45 %, 3.22 %, and 
9.44 % of China’s overall area, respectively) play distinct roles in dry 
deposition. The heights of these trees are often >2 m. LAI can be used to 
quantify the density of vegetation leaves and canopies that play a role in 
removing PM per unit area. The greater the LAI value, the stronger the 
pollution cleaning effect. These vegetation types are mainly concen-
trated in northeastern and southern China (Fig. 4(b) and (c)), including 
Salix babylonica, Platanus orientalis, and Cinnamomum camphora, which 
have strong air purification capacities in the urban areas of China. The 
spatial distribution of the WS (Fig. 4(d)) is the result of meteorological 
and topographic factors. 

The above reference data were used to form monthly grid data of dry 
deposition in China from 2000 to 2020. Subsequently, quarterly results 
were obtained by cumulative averaging based on monthly datasets. 
Fig. 5 shows the dry deposition estimation of PM2.5 in China’s urban 
green spaces from 2000 to 2020. The blue and green triangles represent 
the average PM2.5 and LAI in the vegetation areas, respectively. The 
spatial and temporal distributions have the following characteristics: 1) 
seasonal variation was prominent because of the law of vegetation 
growth. In northern China, deciduous broad-leaved forests are dominant 
and the main growth season is from March to August, whereas in 
southern China, evergreen broad-leaved forests are dominant and the 
main growth season is from September to February; 2) vegetation dis-
tribution effects: owing to policy and natural conditions, northeastern 
and southern China have shown a notable increase in vegetation density 
over the years. Northeast China has been affected by the implementation 
of the Three-North shelter forest policy since the 1980s, whereas 
southern China has been affected by climatic conditions that are optimal 
for vegetation development (Huang et al., 2010); 3) air pollutant effects: 
the main sources of air pollutant emissions are industrial manufacturing 
byproducts and exhaust gases. China’s industry is mainly distributed in 
the southern urban agglomeration, and the PM emissions are not limited 
by season and climate; thus, counter-seasonal changes are observed near 
factories. 

Overall, the effect of vegetation on PM2.5 dry deposition mainly 
occurred on the southeastern side of the Hu Line, which is the dividing 
line between China’s population and economic development agglom-
eration, as proposed by the Chinese geographer Hu Huanyong in 1935 
(Hu, 1935). This line coincides with the summer monsoon transition 
zone that begins and ends in Tengchong. The eastern side contains 96 % 
of China’s population, whereas the western side contains only 4 %. 
However, the economic gap between the two regions is widespread. To 
analyze the spatial variation of dry deposition, the Hu Line was used as 
the axis, the cumulative amount of dry deposition was mapped to this 
dimension, and its center of gravity was counted, as shown by the red 
circle, where the corresponding arrow is the center of gravity movement 
trend. As shown in Fig. 5(a)–(f)–(k) and (j)–(o)–(t), from winter to 
autumn, the center of gravity shifted from south to north and then to 
south twice in the same year. The maximum annual change in a single 
pixel was 0.4 t, and the standard deviation of the long-term series was 
0.22 t. As shown in Fig. 5(u), Fig. 5(a)–(t) is a group diagram corre-
sponding to the west-east upward direction over many years. The cu-
mulative dry deposition statistical curve of each quarter shows that dry 

deposition mainly occurs on the southeast side of the Hu Line, and there 
is a center of gravity transfer with the change in season. With interan-
nual change, dry deposition in the south shows a marked decrease, 
possibly related to the considerable reduction in atmospheric PM con-
centrations, which is discussed here in Section 4.2. In summary, the dry 
deposition effect of urban green spaces on PM2.5 in China is extremely 
uneven in terms of spatial and temporal distribution. To achieve sus-
tainable urban development, it is necessary to improve local air quality 
through corresponding policies. 

The quarterly PM10 dry deposition estimation results obtained from 
the monthly average raster dataset are shown in Fig. 6. The orange and 
green triangles represent the average PM10 concentration and LAI in the 
vegetated area, respectively. The maximum dry deposition of PM10 on a 
single pixel was 2 t, and the effect on improving air quality was 
approximately four times that of PM2.5. This may be related to the larger 
aerodynamic radius of PM10, which is barely affected by meteorological 
factors. Overall, the effect of vegetation on PM10 dry deposition was 
high in spring and summer and low in autumn and winter, which also 
occurred southeast of the Hu Line. As shown in Fig. 6(a)–(f)–(k) and (j)– 
(o)–(t), the center of gravity shifts from north to south and then to north 
from winter to autumn, and fluctuates again in the same year. The 
maximum annual change in a single pixel is 1.8 t, and the standard 
deviation of the long-term series is 0.34 t, which is prominent. As shown 
in Fig. 6(u), the multiyear and quarterly cumulative dry deposition 
statistical curve of the west-east upward direction corresponding to the 
(a)–(t) group diagram verified the above, and no apparent center of 
gravity shift was observed with seasonal changes. In summary, the dry 
deposition of PM10 in urban green spaces in China has changed 
dramatically in terms of spatial and temporal distribution, possibly 
owing to the combined action of different tree species, the external 
environment, and other factors. 

The structure and growth period of different tree species greatly 
influence the dry deposition of atmospheric pollution particles, which 
must be included in the experimental discussion. Therefore, land cover 
type reference data (MCD12Q1) were introduced to calculate the cu-
mulative dry deposition under different tree species from 2000 to 2020, 
as shown in Fig. 7, of which Fig. 7(a) shows the statistical results for dry 
deposition of PM2.5 by different tree species. 

The histogram in Fig. 7 corresponds to evergreen coniferous, ever-
green broad-leaved, deciduous coniferous, and deciduous broad-leaved 
forests, with vegetation area proportions of 10.71 %, 38.13 %, 13.0 %, 
and 38.1 %, respectively). Compared with coniferous, larger leaf area 
increases the probability and total amount of dry deposition in broad- 
leaved, and the “roughness” of leaf surface (lots of ridges or hair) in-
creases the intercepted surface area, but the influence of dormant season 
should also be considered (Sæbø et al., 2012; Yang et al., 2015). The line 
chart corresponds to the cumulative value of annual dry deposition. 
Overall, from 2000 to 2013, the dry deposition effects of PM2.5 and PM10 
on vegetation showed fluctuating, with the reduction of PM2.5 and PM10 
increasing from 0.83 * 106 to 1.43 * 106 t and from 3.53 * 107 to 5.45 * 
107 t, respectively. From 2013 to 2020, this effect showed a linear 
decreasing trend with the reduction of PM2.5 and PM10 from 1.43 * 106 

to 0.75 * 106 t and from 5.45 * 107 to 2.91 * 107 t, respectively. The year 
2013 was the key inflection point for the change in dry deposition 
because China launched the “Air Pollution Prevention and Control Ac-
tion Plan” that year, after realizing the harmful effects of air pollution, 
calling for energy conservation and emission reduction in major urban 
agglomerations to reduce the overall atmospheric PM concentration by 
10 % (Wang et al., 2019). Subsequently, the concentration of atmo-
spheric pollution particles decreased substantially, affecting the clean-
ing of urban green spaces. The statistical results showed that dry 
deposition in 2020 was even lower than that in 2000. 

The overall effects of dry deposition varied drastically among the 
different tree species. In 2013, the annual dry deposition of PM2.5 in 
China was ranked as follows: evergreen broadleaf (0.83 * 106, 58.14 %) 
> deciduous broadleaf (0.44 * 106, 31.08 %) > evergreen needleleaf 
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(0.13 * 106, 9.03 %) > deciduous needleleaf (0.02 * 106, 1.73 %). In 
subsequent years, the proportion of dry deposition for each tree species 
did not significantly differ from that in 2013. In China, the main vege-
tation type is broad-leaved forests, which account for 76.24 % of the 
total vegetation area and 89.22 % of the total dry deposition, which is 
approximately nine times that of coniferous forests. Although the area of 
evergreen broad-leaved forests is approximately equal to that of conif-
erous broad-leaved forests, the total amount of dry deposition in ever-
green broad-leaved forests is twice that of coniferous broad-leaved 
forests. This observation indicates that the dry deposition rate and the 
effects of evergreen broad-leaved forests on PM2.5 and PM10 were the 
highest. In subsequent urban development planning, the density of 
evergreen broad-leaved trees should be appropriately increased in 
combination with appropriate climate and geographical conditions to 
improve air quality. 

Although afforestation and enhanced green density are important 
means of preventing and controlling air pollution in Chengdu, forests 
have limitations in improving the atmospheric environment. However, 

solving the fundamental problem of air pollution is challenging. In Fig. 7 
(a) and (b), dry deposition shows a rapid decline after 2013, which was 
not due to significant changes in vegetation or meteorological condi-
tions; however, the concentration of atmospheric pollutants decreased 
sharply owing to local policies. As shown in Table 5, this observation is 
based on the statistical results of the CHAP dataset and those of this 
study. From 2000 to 2013, PM2.5 and PM10 concentrations increased at a 
rate of approximately 10 % per year and peaked in 2013. From 2013 to 
2020, these concentrations began to decline at a rate of approximately 
15 % annually, reaching a minimum in 2020. Combined with the results 
from Fig. 7, the overall trend of dry deposition fluctuated around the 
change in atmospheric PM concentration, indicating that the dominant 
factor affecting the change in dry deposition was the concentration of 
atmospheric PM. The key to alleviating air pollution is controlling 
emission sources and reducing pollutant emissions. The cleaning effect 
of urban green spaces on air pollutants is the result of several factors, 
and it is necessary to analyze the influence of a single variable on 
complex results. 

Fig. 6. Spatial distribution of PM10 dry deposition estimated for urban green spaces in China. (a)–(t) Spatial distribution of the mean value of PM10 dry deposition. 
(u) Corresponding to Fig. (a)–(t), the statistical curve of cumulative dry deposition in each quarter in the west-east direction. 
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4.2. Multi-driving factors analysis of dry deposition 

Urban green spaces provide ecological protection and restoration 
services for urban development, with dry vegetation deposition as the 
main contributor. Dry deposition is a process in which suspended par-
ticles migrate from the lower atmosphere to the underlying surface via 
gravity, interception, and adsorption. The dry deposition of PM2.5 & 
PM10 on vegetation is related to several factors, such as vegetation 
growth status and the external environment. Based on wavelet and 

multi-WCs methods, we tried to explore the correlation between the dry 
deposition and environmental factors, such as WS, PRE, normalized 
difference vegetation index (NDVI), and LST. After the above calcula-
tion, the obtained WC value was between zero and one, which was 
similar to that of the Pearson correlation coefficient. This value can be 
regarded as the local correlation coefficient in time-frequency space. 
The larger the value, the stronger the correlation. In the wavelet anal-
ysis, a 95 % confidence level was obtained using a Monte Carlo repeat 
based on the first-order autocorrelation coefficient (1000 repeats). As 

Fig. 7. Analysis of dry deposition changes of different tree species from 2000 to 2020.  
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wavelet analysis is applied to limited time-series data, an edge effect 
may occur at the edge of the time series. Therefore, the region related to 
the edge effect is defined as the influence cone (COI), and the wavelet 
power within the COI cannot be estimated reliably. The explanatory 
power of the predictors of the response variables was quantitatively 
evaluated by calculating the proportions of areas of significant coher-
ence (PASC) and average WC (AWC). 

Fig. 8 shows the local changes in PM2.5 and PM10 as well as the 
coherence of each influencing factor during the study period. PM2.5 and 
WS had significant interannual and interdecadal oscillation modes. On 
the high-frequency scale (32 months), the cross-phase angle between 
PM2.5 and WS was approximately 90◦ upward, PM2.5 delayed WS by 

approximately 1 / 4 period, and the coherence between PM2.5 and WS 
was greater on the low-frequency scale than on the high-frequency scale. 
The significant resonance period of PM2.5 and PRE was mainly 
concentrated on the 8–16 month scale, the cross-phase angle was up-
ward, PM2.5 delayed PRE by approximately 1 / 4 period, and at the high- 
frequency scale (< 8 months), PM2.5 had a significantly negative cor-
relation with PRE. The cross-phase angle of PM2.5 and NDVI changed 
irregularly on the <8 month scale. At the 8–16 month scale, the cross- 
phase angle between PM2.5 and NDVI was approximately 90◦ upward, 
and PM2.5 delayed NDVI by approximately 1 / 4 cycles. At the 16 month 
scale, coherence was not apparent. On the high-frequency scale, PM2.5 
and LST had significant and dispersed positive-phase resonance periods 

Table 5 
Analysis of the influence of dry deposition in urban green spaces. 

Year 2000 2005 2010 2013 2015 2020

Concentration of PM2.5 / (g·m 3) 32 37 38 40 33 21

Concentration of PM10 / (g·m 3) 57 63 65 68 57 36

Dry deposition of PM2.5 / (103t) 832 1124 1148 1439 1107 751

Dry deposition of PM10 / (103t) 35275 39873 40769 54385 44361 29021

*Orange: increase from the previous year; blue: decrease from the previous year. 

Fig. 8. PM2.5 and PM10 WC analysis results. The arrow indicates the relative phase difference, → same phase, ← opposite phase, ↑ PM2.5 and PM10 are delayed in the 
impact factor, and ↓ PM2.5 and PM10 are ahead of the impact factor. The black solid line indicates a 95 % confidence level red noise test, and the shadow area is the 
wavelet influence cone (COI). 
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only on the 4–8 month scale, indicating that PM2.5 and LST have 
consistent changes on this scale, but significant coherence is rarely 
observed on the <4 month scale. On the 8–16 month scale, the cross- 
phase angle between PM2.5 and LST was upward, and PM2.5 delayed 
LST by approximately 1 / 2. 

The significant correlation domains between PM10 and the impact 
factors were mainly concentrated on the 8–16 month scale. On this scale, 
PM10 was significantly negatively correlated with the WS and signifi-
cantly positively correlated with the PRE, NDVI, and LST. At the high- 
frequency scale (16 month scale), the coherence domain of PM10 with 
WS and NDVI was not significant and was partially affected by the 
wavelet-edge effect. PM10 was significantly negatively correlated with 
PRE and significantly positively correlated with LST. The high coher-
ence between PM10 and the impact factors was also mainly concentrated 
on the 8–16 month scale. The coherence between PM10 and WS at the 
high-frequency scale was greater than that at the low-frequency scale, 
whereas the coherence between PM10 and PRE, NDVI, and LST at the 
high-frequency scale was lower than that at the low-frequency scale. 

The statistical results corresponding to Fig. 8 are listed in Table 6. 
Generally, the coherence of PM2.5 and each impact factor in the time 
domain is more complex than that of PM10, and the high coherence 
domains of PM2.5, PM10, and the impact factor are mainly concentrated 
on the 8–16 month scale. At this scale, the significant coherence domain 
of PM10 and the impact factor covered the entire study period, whereas 
that of PM2.5 and the impact factor were not completely covered. NDVI 
is an important parameter affected by dust retention in green spaces. 
The more complex the vertical structure of the green space, the higher 
the dust retention effect. LST affects the Brownian diffusion and gravity 
deposition processes of the particles. The higher the temperature, the 
more intense the Brownian motion and the greater the gravitational 
deposition rate. The LST accelerates photochemical reactions and 
pollutant formation. PRE can cause hygroscopic particles to swell and 
increase the viscosity of the plant surface, thereby accelerating deposi-
tion, reducing the resuspension of particles, and affecting vegetation 
porosity, thus, affecting the dust retention rate. The WC statistical re-
sults (Table 6) suggest that the PRE dominantly affected PM2.5 and PM10 
(with the highest PASC), whereas LST and WS had the least correlation 
with PM2.5 and PM10, respectively. 

Table 6 shows that the coherence between PM2.5 and a single impact 
factor was not significant when compared with PM10. Therefore, a multi- 
WC model was introduced to analyze the relationship between PM2.5 
and multiple impact factor combinations (Fig. 9). Compared to WC, the 
multi-WC model can analyze the synergistic effects of multiple factors on 
PM2.5 reduction at multiple scales. Distinct periodic gradient changes 
were present between the two-factor combination and the three- and 
four-factor combinations, and the response ability of different combi-
nations to the change in the reduction amount was different at different 
time-frequency scales. On an hourly scale, the best bivariate combina-
tion to explain the change in PM2.5 reduction was WS-PRE, and the best 
three-variable combination was WS-PRE-NDVI. On the medium time- 
frequency scale, the best bivariate combination to explain this phe-
nomenon was PRE-LST, and the best three-variable combination was 
WS-PRE-LST. On a large time-frequency scale, the best bivariate 

combination to explain this change was PRE-NDVI, and the best three- 
variable combination was WS-PRE-NDVI. 

From Table 7 and the quantitative statistical results corresponding to 
Fig. 9, it was determined that on different time-frequency scales, the 
combination of each influencing factor was roughly similar to the PASC. 

These results were different for the AWC. The best bivariate combi-
nation for explaining PM2.5 was WS-PRE (PASC = 22.91 %, AWC =
0.74), and the best three-variable combination was WS-PRE–NDVI 
(PASC = 18.74 %, AWC = 0.85). Compared with a single impact factor, 
the combination of impact factors improved the understanding of 
changes in PM2.5 on an hourly frequency scale. Additionally, AWC 
increased with an increase in the number of predictors; however, PASC 
did not necessarily increase. For example, the PASC of the three-variable 
combination was smaller than that of the two-variable combination, 
possibly for the following reasons: 1) additional variables lead to a 
simultaneous increase in the significance threshold, and 2) the signifi-
cant coherence domains of multiple predictors and response variables 
overlap, and the collinearity effect between predictors reduces the 
predictor variance contribution rate. Therefore, the explanatory power 
of variable combinations on changes in PM2.5 is significantly improved 
by adding predictive variables that can independently explain these 
changes at a specific scale. However, this finding also confirms the 
limitations of environmental factors in reducing atmospheric PM, and 
that concentration changes may occupy a greater weight in the results. 

5. Discussion 

The removal of atmospheric pollutants by urban green spaces has 
been widely studied; however, some differences remain in the estima-
tion methods and application scenarios (Nowak and Crane, 2000; 
Nowak et al., 2014a; Zhai et al., 2022c). Dry deposition in urban green 
spaces is affected by numerous factors, such as vegetation characteris-
tics, environmental factors, and human activities, as well as variables 
used in the UFORE model, such as changes in the atmospheric boundary 
layer height, indicating that this model still has room for improvement 
(Nowak et al., 2014b; Whitlow et al., 2014). Additionally, according to 
different application scenarios, the research scale can be as large as 
urban agglomerations or as small as individual trees, and different 
research scales must consider these influences in greater detail (Gong 
et al., 2021; Lin et al., 2021). Compared with existing research, this 
study has notable differences in research scale in that a large area, such 
as China, was used as the research object, and the point data of ground 
observation stations were replaced with the area data of satellite remote 
sensing observations. Because of these differences, the original algo-
rithm of the UFORE model was improved by ignoring the influence of 
the daily PRE frequency on the resuspension rate in the estimation of the 
annual cumulative dry deposition. 

5.1. Analysis of spatial and temporal variation trends in vegetation dry 
deposition 

In Section 4.1, using the UFORE model, the dry deposition of vege-
tation was quantified from 2000 to 2020 and its changing characteristics 
were analyzed from the two dimensions of space and time. It was found 
that the dry deposition of vegetation is the product of a variety of factors 
and that there is a complex interaction between these factors, which, in 
turn, affects the final estimation accuracy of the model, where atmo-
spheric PM concentrations and tree species may be the two main influ-
encing factors. 

Based on this preliminary conclusion, and to analyze the spatial and 
temporal variation trends in the long-term series of vegetation dry 
deposition, the MK + Sen nonparametric test algorithm was used, which 
has been successfully applied in studies of hydrological and meteoro-
logical trend changes. This study implemented an algorithm using a 
third-party open-source library (Hussain and Mahmud, 2019). First, a 
long-term sequence raster dataset was sent to the Sen module for trend 

Table 6 
Parameter statistics of WC between PM2.5 and PM10 and various influencing 
factors.  

WC PASC (%) AWC 

PM2.5-WS  21.97  0.50 
PM2.5-PRE  25.57  0.49 
PM2.5-NDVI  21.40  0.44 
PM2.5-LST  19.04  0.40 
PM10-WS  22.76  0.44 
PM10-PRE  35.63  0.57 
PM10-NDVI  31.36  0.50 
PM10-LST  32.56  0.51  

J. Yao et al.                                                                                                                                                                                                                                      



Science of the Total Environment 900 (2023) 165830

14

analysis. Second, the dataset was sent to the MK module for significance 
testing and combined with the output results of the two modules. The 
trend results were obtained via reclassification and reanalysis, as shown 
in Fig. 10. In China, there was no significant change in the cleaning 
effect of urban green spaces on PM2.5, and only a few urban communities 
exhibited a significant decrease (Fig. 10(a)). The cleaning effect of urban 
green spaces on PM10 changed dramatically and decreased significantly 

in northeastern and southern China (Fig. 10(b)). Compared with PM2.5, 
the cleaning effect of urban green spaces on PM10 changes was more 
noticeable, with 10 % more pixels showing an increasing trend. This 
result may be related to the decrease in PM concentrations in air 
pollution; however, the effect of vegetation on PM10 was weaker than 
that on PM2.5. 

5.2. Response of vegetation dry deposition to environmental factors 

In Section 4.2, multi-WC was used to analyze the period and coher-
ence between vegetation dry deposition and multiple factors; however, 
the local characteristics and macro-relationship of the signal in the time 
domain could not be extracted. Therefore, GeoDetector was introduced 
as a supplement to WC and to verify the global features. Geodetectors 
are geographical models used to analyze complex phenomena under 
multifactor interactions (Wang and Xu, 2017). This model was used to 
analyze the contribution of multiple factors to dry deposition as a sup-
plement and side confirmation of WC. First, according to the re-
quirements of the geographic detector for the data type of driving 
factors, the natural breakpoint method was used to divide the monthly 
average WS, monthly cumulative PRE, and monthly average LST into six 
categories, and the monthly maximum synthetic NDVI was divided into 
four categories. Next, the factor and interaction detection of PM2.5 and 

Fig. 9. Results of multi-WC analysis of PM2.5 and multi-impact factors combination.  

Table 7 
Parameter statistics of multi-WC between PM2.5 and PM10 and various influ-
encing factors.  

Combinations PASC (%) AWC 

Two factors PM2.5-WS-PRE  22.91  0.74 
PM2.5-WS-NDVI  22.02  0.71 
PM2.5-WS-LST  19.62  0.69 
PM2.5-PRE-NDVI  20.78  0.65 
PM2.5-PRE-LST  15.31  0.63 

Three factors PM2.5-NDVI-LST  15.37  0.62 
PM2.5-WS-PRE-NDVI  18.74  0.85 
PM2.5-WS-PRE-LST  18.31  0.84 
PM2.5-WS-NDVI-LST  17.89  0.83 
PM2.5-PRE-NDVI-LST  12.46  0.75 

Four factors PM2.5-WS-PRE-NDVI-LST  19.37  0.91  

Fig. 10. Trend analysis of dry deposition of urban green space vegetation in China from 2000 to 2020.  

J. Yao et al.                                                                                                                                                                                                                                      



Science of the Total Environment 900 (2023) 165830

15

PM10 was conducted using a geographic detector, and the results are 
shown in Fig. 11. 

For PM2.5, the explanatory power of each driving factor was ranked 
as follows: monthly cumulative PRE > monthly average LST > monthly 
average WS > monthly maximum synthetic NDVI (Fig. 11(a)). The 
significance levels of the monthly cumulative PRE, monthly average 
LST, and monthly maximum synthetic NDVI were above 95 %. The 
monthly cumulative PRE and monthly average LST had strong explan-
atory powers, reaching 0.124 and 0.119, respectively, indicating that 
they are important factors affecting PM2.5. For PM10 reduction, the 
explanatory power of each driving factor was ranked as follows: 
monthly average LST > monthly maximum synthetic NDVI > monthly 
cumulative PRE > monthly average WS, with significance levels above 
99 % (Fig. 11(b)). The monthly average LST and monthly maximum 
composite NDVI had values >0.59, indicating a significant impact on 
PM10 reduction. The detection results of the spatial differentiation 
interaction between PM2.5 and PM10 reduction are shown in Fig. 11(c) 
and (d), where the interaction explanatory power of any two driving 
factors is greater than that of a single driving factor. The interaction 
between factors has a two-factor enhancement and nonlinear enhance-
ment trend for the reduction of PM2.5 and PM10. Coupling different 
factors increases the explanatory power of PM2.5 and PM10 reductions. 
The monthly cumulative PRE ∩ monthly maximum composite NDVI has 
the strongest explanatory power of 0.666, indicating that the combined 
effect of the two has a significant impact on PM10 reduction. Comparing 
the interactive driving results of PM2.5 and PM10 reductions, the inter-
action between the monthly average WS and the other factors was 
higher for both dependent variables, indicating that the monthly 
average WS is one of the key factors affecting air quality. 

6. Conclusions 

Based on the UFORE algorithm, this study overcame the limitations 
of traditional site-scale research by combining multi-source satellite 
remote sensing products to form a dry deposition estimation raster 
dataset of PM2.5 and PM10 for China’s urban green spaces from 2000 to 
2020. Additionally, the spatio-temporal changes in the long-term series 
were analyzed and wavelet coherence was combined to analyze the 
impact of environmental factors on dry deposition, thus providing a 
scientific reference and theoretical basis for better understanding the 
ecological and environmental benefits of vegetation. The resulting 
conclusions are as follows:  

1. The dry deposition in urban green spaces mainly occurred on the 
southeastern side of the Hu Line. The north of the Hu Line focuses on 
the Three North Shelterbelts, whereas the south focuses on the 
metropolitan group. The overall center of gravity migrated twice 
from winter to autumn, and at the maximum dry deposition per 
pixel, PM10 was approximately four times that of PM2.5.  

2. The main source of dry deposition in urban green spaces in China is 
broad-leaved forests, accounting for 76.24 % of the total vegetation 
area and 89.22 % of the total dry deposition; the dry deposition on 
evergreen broad-leaved trees per unit area is twice that of deciduous 
broad-leaved trees. In subsequent urban development planning, the 
density of evergreen broad-leaved trees should be appropriately 
increased in combination with appropriate climate and geographical 
conditions to improve air quality.  

3. PM have typical time-frequency scale coherence with environmental 
factors. The WC results showed that the significant coherence do-
mains of PM and environmental factors were concentrated from 8 to 
16 months, but the coherence between PM2.5 reduction and envi-
ronmental factors in the time domain space was more complex than 

Fig. 11. Geodetector analysis results. X1: monthly average wind speed; X2: monthly cumulative precipitation; X3: maximum monthly composite normalized dif-
ference vegetation index (NDVI); and X4: monthly mean land surface temperature (LST). 

J. Yao et al.                                                                                                                                                                                                                                      



Science of the Total Environment 900 (2023) 165830

16

that of PM10. The precipitation predominantly explained the changes 
in PM2.5 and PM10, while land surface temperature and wind speed 
had the least correlation. 

However, some limitations remain, such as the need to introduce 
more measured data to improve the settlement rate-fitting model. These 
limitations will be the main focus of our further research. The current 
and subsequent versions of the Dry Deposition Effect of urban green 
spaces on ambient Pollution in China (DDEP) dataset will be available 
on AI Earth (URL: https://engine-aiearth.aliyun.com/#/data 
set/TJNU_3JECO_CHINA_DDEP_V01). 
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