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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• PM1 exhibited relatively stronger effects 
on CVDs than PM2.5 and PM10. 

• Detected impacts from size-specific PMs 
on hypertension but not IHD and stroke. 

• PM-associated effects on IHD were only 
identified in cold months.  
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A B S T R A C T   

Background: Despite contributing to the majority of ambient fine particles (PM2.5), PM1 (particulate matter [PM] 
with aerodynamic diameter ≤1 μm) remains poorly studied in terms of its acute effects on cardiovascular dis-
eases (CVDs) in China. This study aims to evaluate the short-term associations of size-specific PMs (i.e., PM1, 
PM2.5, and PM10) exposures with hospital admissions for CVDs in a southern Chinese metropolis. 
Methods: We collected 5,969 records of hospital admissions for CVDs and daily average concentrations of air 
pollutants and weather conditions in Shenzhen from January 1st 2015 to December 31st 2017. We adopted a 
time-stratified case-crossover design and conditional logistic regression models to assess short-term associations 
between size-specific PMs and CVD hospitalizations along different exposure days. 
Results: During the study period, annual average concentrations of PM1, PM2.5, and PM10 were 18.7, 27.8, and 
45.4 μg/m3, respectively. Compared to PM2.5 and PM10, PM1 exhibited a generally stronger association with CVD 
hospitalizations. Hospital admissions for CVDs increased by 6.7% (95% confidence interval: 1.2–12.5%), 4.5% 
(0.4–8.7%), and 3.4% (0.5–6.3%), corresponding to per 10-μg/m3 rise in exposure to PM1, PM2.5, and PM10 at lag 
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03 days. In our stratified analyses by CVD sub-causes, size-specific PMs showed consistent effects on hyper-
tension but no evident association with ischemic heart disease (IHD) and stroke. Seasonal analysis revealed 
significantly larger PM-associated risks among IHD patients in cold months (October–March). Nevertheless, in 
warm months (April–September), the older group (aged 65+ years) was more prone to adverse effects of PM1 
exposure at lag 0 day. 
Conclusion: Short-term exposure to size-specific PMs, PM1 in particular, may trigger incidences of CVD hospi-
talization. To effectively mitigate adverse effects of particulate pollution, evidence-based PM1 standards should 
be developed as well in Chinese less-polluted megacities.   

1. Introduction 

According to the Global Burden of Disease Study, cardiovascular 
diseases (CVDs) have remained the top leading cause of health loss 
globally until now (Roth et al., 2017, 2018). The all-age number of 
deaths due to CVDs was estimated to be achieved upwards 17.8 million 
worldwide in 2017, with counting around 330.2 million years of life lost 
(Roth et al., 2018). Over the past couple of decades, plenty of epide-
miological research has investigated the adverse effects of short-term 
and lifelong exposure to ambient particulate matter on cardiovascular 
health (Cohen et al., 2017; Khan et al., 2019; Pope et al., 2004; Raja-
gopalan et al., 2018; Saber et al., 2013). Derived from the burning of 
biomass and fossil fuels (Heal, 2014), ambient PM2.5, particle mass with 
aerodynamic diameter less than 2.5 μm, is widely deemed to be the main 
hazardous component to cardiovascular health in particulate pollutants 
(Achilleos et al., 2017; Chang et al., 2015; Chen and Hoek, 2020; Khan 
et al., 2019; Requia et al., 2017). 

The authoritative scientific statement from the American Heart As-
sociation summarized that exposure to PM2.5 over a few hours to weeks 
could trigger CVD-related mortality and nonfatal events such as hospital 
admission (Brook et al., 2004, 2010). To date, PM-related evidence for 
CVDs is mainly concentrated on fine and coarse particulate matters 
across the globe (Chang et al., 2015; Crichton et al., 2016; Dominici 
et al., 2006; Gu et al., 2020; Liu et al., 2017). Nevertheless, emerging 
studies suggested smaller particles may induce stronger toxic effects on 
the cardiovascular system (Chen et al., 2015; Kwon et al., 2020; Yang 
et al., 2019). For instance, a Milan research regarding PM1-associated 
adverse effects on mice cardiovascular system found that inhaled PM1 
could sustain the adhesion of platelets to endothelia and considerably 
increase thrombosis and myocardial infarction risks (Farina et al., 
2013). However, due to a wide lack of monitoring data for submicron 
particulate matter, PM1-CVD evidence has been very sparse worldwide, 
particularly in developing countries. 

Compared with developed states, China suffers more greatly from 
burden of disease attributed to ambient fine particulate pollution (Maji 
et al., 2018; Wang et al., 2020). According to ground measurements 
across over 90 stations in mainland China during 2013–2014, the ratios 
of PM1 to PM2.5 ranged from 60% to 90% across regions and seasons 
(Chen et al., 2018; Wang et al., 2015). PM1-associated effects on hos-
pitalizations for cause-specific CVDs remain unknown, although several 
studies have demonstrated that PM1 was strongly associated with hos-
pital admissions in China (Chen et al., 2020a; Liu et al., 2021; Zhang 
et al., 2020a). In this study, we employed a time-stratified case-cross-
over design to examine the effect of short-term exposure to size-specific 
PMs (i.e., PM1, PM2.5 and PM10) on hospital admissions for major car-
diovascular subcategories in Shenzhen, China. The susceptible pop-
ulations and seasonal patterns were further identified by subgroup 
analysis by sex, age, and season. 

2. Materials and methods 

2.1. Study site 

Shenzhen (coordinates: 22◦24′ to 22◦52′ N, 113◦43′ to 114◦38′ E), a 
coastal metropolis bordering on Hong Kong, is a primary node in the 

global economic network. It has an area of around 1997 km2 and a 
permanent resident population of about 11.4 million in 2016 (Meng 
et al., 2020). Baoan Central Hospital of Shenzhen is a large-scale general 
hospital located in the central Baoan District. Among 10 district-level 
jurisdictions of Shenzhen, Baoan district has the broadest area (384 
km2) and the largest population (3.34 million people), accounting for 
more than a quarter of Shenzhen’s total population (http://tjj.sz.gov. 
cn/). Besides, Shenzhen has a subtropical maritime monsoon climate 
and a relatively low level of ambient particulate pollution compared 
with other Chinese megacities. But as one of the primary air pollutants in 
Shenzhen, the concentration of PM2.5 still exceeds the annual standard 
(10 μg/m3) recommended by the World Health Organization. 

2.2. Data collection 

2.2.1. Daily records of hospital admissions for CVDs 
We collected 5,969 cases of CVD hospitalizations in the Baoan Cen-

tral Hospital of Shenzhen during January 1st 2015–December 31st 
2017. For each patient, we extracted its admission date, disease code, 
and demographic information such as sex, age, marital status, and 
ethnicity. According to the Tenth Revision of the International Classi-
fication of Diseases (ICD-10), CVD sub-causes were coded as follows: 
CVDs (I00–I99), hypertension (I10–I15), ischemic heart disease (IHD, 
I20–I25), and stroke (I60–I69). The dates of hospitalizations are further 
divided into cold months (October–March) and warm months 
(April–September), and other sub-categories are classified by sex (male 
and female), and age (0–17, 18–44, 45–64, and 65+ years). 

2.2.2. Ground measurements of air pollutants and meteorological data 
Daily concentrations of PM2.5 and PM10, recorded in Shenzhen 

Environmental Monitoring Center (SEMC), were average ground mea-
surements across 11 air quality monitoring stations. These reliable 
monitoring measurements have been widely used to estimate atmo-
spheric pollution exposures in China (Lee et al., 2019; Maji et al., 2018). 
For restrictions of measuring technology in SEMC, PM1 levels were not 
considered into routine monitoring work. We gleaned daily mean con-
centrations of PM1 in Shenzhen from China Atmosphere Watch Network 
(CAWNET), which is an adjunct of the Chinese Academy of Meteoro-
logical Sciences (Wang et al., 2019; Zang et al., 2018). Details of the 
measurement technique have been reported previously (Wang et al., 
2015). Briefly, with two quality-control procedures in sampling ambient 
air, we used an optical particle counter (OPC) and environmental dust 
monitors (GRIMM 180, Grimm 180 Multi-channel Aerosol Spectrom-
eter; Ainring, Germany) to acquire information regarding particle 
number size distribution and daily ambient PM1 levels (Chen et al., 
2017a; Zang et al., 2018). During the study period (1096 days), there is 
complete data for PM1 and around 2.0% missing data for PM2.5 and 
PM10 (22 days). Given sporadic days of missing data, we did not perform 
missing data imputation in statistical analysis (Tian et al., 2019). 

We also collected monitoring data of four gaseous pollutants (sulfur 
dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO], and 
ozone [O3]) from SEMC. Over the same period, daily meteorological 
covariates were shared on the China Meteorological Network (http://da 
ta.cma.cn). Meteorological factors included temperature (◦C), relative 
humidity (%), sunshine duration (hour), wind speed (m/s), and 
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atmospheric pressure (hPa). Hospital admission information, ground 
measurements of air pollutants, and meteorological data were matched 
by date for each hospitalized case for CVDs. 

2.3. Study design 

A case-crossover design was proposed to identify risk factors of acute 
events (Maclure, 1991), and its theoretical framework is to compare the 
exposure of the same research subject in the period time before the event 
with the exposure without the incident. In this design, self-matching of 
cases could increase experimental efficiency and control time-invariant 
individual-level confounders such as behavioural and metabolic factors 
(Carracedo-Martínez et al., 2010). To deal with the potential con-
founding effects by long-term trend, seasonality and day of week, 
Lumley and Levy introduced a time-stratified case-crossover (TSCC) 
design (Lumley and Levy, 2000). Our study used a TSCC design to assess 
the risk of hospital admissions for CVDs associated with short-term 
exposure to particulate pollution. For each admission date of CVD pa-
tient, time could be stratified by month and day of week in the same year 
to create partitions with three or four referent days (Liu et al., 2019; 
Lumley and Levy, 2000; Zhang et al., 2020a). 

2.4. Statistical analysis 

The Spearman correlation coefficient was adopted to measure the 
correlation between air pollutants and meteorological conditions (Liu 
et al., 2019). Our study applied conditional logistic regression (CLR) 
models, a standard method to tackle the matched case-control study, to 
evaluate the short-term effects of ambient exposures to PM1, PM2.5, and 
PM10 on hospital admissions for CVDs. CLR model can be implemented 
using a Cox proportional hazards regression model in R software (Ding 
et al., 2017). Our main analytic model was shown as below: 

ln(h(t,X ))= ln(h0(t)) + β(PMs) + ns(temperature, df = 3)

+ ns(relative  humidity, df = 3)

Where t = the day; X = the hospital admission; ln (h (t, X)) = risk 
function; ln (h0 (t)) = baseline risk function; β = the coefficient for PMs 
to be estimated; ns = natural cubic spline function; and df = degrees of 
freedom (Chen et al., 2019; Di et al., 2017). 

Using maximum likelihood estimation (MLE) method, we estimated 
odds ratios (ORs) and their 95% confidence intervals (CIs) for CVD 
admission associated with per 10-μg/m3 increase in PM exposure. The 
exposure-response relationship curves were plotted to examine linearity 
hypothesis between PM concentrations and CVD hospitalizations. In 
brief, we replaced the linear term of PMs in the main analytic model 
with ns smoothers (3 df for PM1, PM2.5 and PM10), as was done in pre-
vious studies (Bell et al., 2006; Gu et al., 2020). 

To explore delayed or cumulative effects of particulate pollutants, we 
used different lag structures, including single-day lag (lag 0–lag 4 day) 
and moving-average lag (lag 01–lag 04 days) (Wang et al., 2020; Zhang 
et al., 2020a). For instance, lag 2 day’s exposure was assigned the PM 
concentration measured at 2 days prior to admission, while lag 02 days’ 
exposure was the average concentration recorded on the day of admis-
sion, 1 day and 2 days before hospitalization. 

Meanwhile, we conducted subgroup analyses stratified by cause of 
admission (total CVDs, hypertension, stroke, and IHD), sex (male, fe-
male), and age (18-44, 45-64, and 65+ years) (Amsalu et al., 2019; 
Organization, 2010). According to date for admissions, we further 
divided each subgroup into warm season and cold season to identify the 
seasonal pattern of PM-hospitalization associations. In line with prior 
research (Guo, 2017; Zhang et al., 2020b), a meta-regression (MR) 
method was applied to differentiate PM-associated effect estimates be-
tween subgroups (cause, gender, and age) and seasons. For example, 
treating the cause of CVD admission as a meta-predictor (total CVDs as 
the reference), we regarded cause-specific effect estimates as the 

dependent variable in the MR model. We utilized the likelihood ratio test 
to assess whether the effects estimated for sub-causes statistically varied 
from that for total CVDs. 

2.5. Sensitivity analysis 

A range of sensitivity analyses were conducted to check the robust-
ness of our findings by changing the regression modelling parameters. 
Specifically, we (1) changed df of temperature (3–6 df) and relative 
humidity (3–6 df) for natural cubic spline methods; (2) performed two- 
pollutant models by additionally adjusting for gaseous pollutants (i.e., 
SO2, NO2, CO, and O3); (3) included the natural cubic spline term of 
other meteorological factors (i.e., atmospheric pressure, wind speed, 
and sunshine duration); (4) excluded CVD cases under the age of 18 
years (only 42 inpatients, 0.7%). 

All analyses were conducted using R software (version 3.6.3). We 
used (1) the “ggcorrplot” package for Spearman’ correlation analysis; 
(2) the “survival” and “splines” package for CLR analysis; (3) the 
“mvmeta” package for meta-regression analysis. For all statistical tests, 
the two-sided effect of p < 0.05 was considered statistically significant. 

3. Results 

3.1. Summary description 

Table 1 presents the statistical characteristics of hospital admission 
cases for CVDs included in analysis, 2015–2017. There was a total of 
5969 patients, with a mean age of 53.7 (standard deviation [SD], 16.3). 
The group aged 18–64 years accounted for about three quarters (73.4%), 
while the group aged 0–17 only shared a proportion of <1%. Three CVD 
sub-cause groups having over one-tenth were hypertension (31.9%), 
stroke (29.2%) and IHD (12.1%), respectively. The vast majority of 
people are married and Han, and approximately half CVD hospitaliza-
tions occurred in warm season. 

Table 1 
Basic characteristics of hospital admission cases for cardiovascular diseases 
in Shenzhen, China, 2015–2017.  

Characteristics Value 

Total cardiovascular diseases, No. (%) 5,969 (100) 
Case day, No. 5,969 
Control day, No. 20,355 
Cause, No. (%) 

Hypertension 1,905 (31.9) 
Stroke 1,744 (29.2) 
Ischemic heart disease 722 (12.1) 

Sex, No. (%) 
Male 3,599 (60.3) 
Female 2,370 (39.7) 

Age of admission, years 
Mean (SD) 53.7 (16.3) 
Median (IQR) 52.0 (22.0) 

Age, No. (%) 
0–17 42 (0.7) 
18–44 1,707 (28.6) 
45–64 2,667 (44.7) 
65+ 1,553 (26.0) 

Marital status, No. (%) 
Never married 323 (5.4) 
Married 5,372 (90.0) 
Divorced or widowed 216 (3.6) 
Undefined 58 (1.0) 

Ethnicity, No. (%) 
Han 5,954 (99.7) 
Other 15 (0.3) 

Season of admission, No. (%) 
Warm 2,914 (48.8) 
Cold 3,055 (51.2) 

Abbreviation: SD, standard deviation; IQR, interquartile range; Warm, April 
to September; Cold, October to March of the next year. 
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Table 2 depicts distribution characteristics of particulate and gaseous 
pollutants and meteorological factors. During the study period, mean 
concentrations of PM1, PM2.5, and PM10 were 18.7 (interquartile range 
[IQR] = 16.3) μg/m3, 27.8 (21.0) μg/m3, and 45.4 (29.0) μg/m3, 
respectively. Fig. 1 shows Spearman’s correlation coefficients (r) be-
tween air pollution and meteorological conditions. PMs and gaseous 
pollutants are positively correlated, with r ranging from 0.43 to 0.63. 
Meanwhile, PMs had a positive association with atmospheric pressure 
and were negatively correlated with temperature and relative humidity, 
while not significantly associated with wind speed and sunshine dura-
tion. PM levels showed a clear seasonal pattern with higher concentra-
tions in cold months (Fig. S1). 

3.2. Main findings 

Fig. 2 shows season-specific ORs (95% CIs) for CVD hospitalizations 
associated with per 10-μg/m3 increase in PM1, PM2.5, and PM10 expo-
sure along several lag days. The corresponding estimates were detailed 
in Table S1. In full-year analysis, for each 10-μg/m3 rise in exposures, 
the estimated ORs (95% CIs) at lag 03 days were 1.067 (1.012–1.125) 
for PM1, 1.044 (1.004–1.087) for PM2.5, and 1.034 (1.005–1.063) for 
PM10, respectively. Fig. 3 displayed exposure-response curves smoothed 
by ns function, suggesting generally linear relationship between CVD 
admissions and concentrations of size-specific PMs. In season-stratified 
analysis, significant PM-hospitalization associations were all found in 
cold season, with an exception of PM1-associated CVD risk (1.009, 
1.003–1.016) at lag 0 day in warm season. 

3.3. Subgroups analyses 

Fig. 4 displays subgroup-specific OR estimates for associations be-
tween CVD hospitalizations and ambient exposures to PM1, PM2.5, and 
PM10, stratified by CVD sub-cause, sex, and age. The pattern of associ-
ations stratified by CVD sub-cause and sex were broadly similar when 
using different fraction-specific PMs as the exposure, and the intensity of 
associations with PM1 was relatively stronger than those with PM2.5 and 
PM10. For a 10-μg/m3 increase in exposures to PM1, PM2.5 and PM10, 
effect estimates for hypertension admissions were 1.086 (1.022–1.155), 
1.083 (1.036–1.133), and 1.056 (1.025–1.089), respectively. For IHD 
and stroke, no evident associations with size-specific PMs were observed 
during full year. Risks of CVD admissions for male associated with per 
10-μg/m3 rise in exposures to particulate air pollutant increased by 8.8% 
(95% CI, 4.0–13.0%) for PM1, 3.7% (0.1–7.4%) for PM2.5, and 3.2% 
(0.7–5.8%) for PM10, respectively. No significant adverse effects of PMs 
were seen among female patients with CVDs. Additionally, no clear 
evidence was identified for risk vulnerability among subpopulations 

stratified by CVD sub-cause, sex, and age. 

3.4. Seasonal analyses 

Fig. 5 manifests seasonal differences between aforementioned sub-
groups in PM1-CVD associations. PM1-hospitalization associations of 
most subgroups (i.e., total CVD, hypertension, IHD, male, and 45–64 
years) were exclusively exhibited in cold season, while significant dif-
ference was only identified for IHD with a p-value of 0.014 for between- 
season effects. Similar IHD findings were also observed for PM2.5 (OR =
1.016, 1.001–1.031, Fig. S2) and PM10 (OR = 1.012, 1.002–1.022, 
Fig. S3) in cold season. Specifically, among patients aged 65+ years, we 
detected a converse seasonal pattern (p = 0.026), with PM1-associated 
ORs of 1.018 (1.004–1.031) in warm months versus 1.000 
(0.991–1.008) in cold months. Season-stratified estimates for subgroups 
by cause (Tables S2), gender (Table S3), and age groups (Table S4) were 
detailed in the supplementary material. 

Table 2 
Summary statistics of ambient air pollutants and meteorological factors in Shenzhen, China, 2015–2017.  

Variable Mean ± SD Min P25 P50 P75 Max 

Particulate pollutants, μg/m3 

PM1 18.7 ± 11.9 1.9 9.1 16.6 25.4 82.7 
PM2.5 27.8 ± 15.3 5.0 16.0 25.0 37.0 100.0 
PM10 45.4 ± 22.4 10.0 29 40.0 58.0 160.0 

Gaseous pollutants 
SO2, μg/m3 7.7 ± 2.2 3.0 6.0 7.0 9.0 18.0 
NO2, μg/m3 31.5 ± 10.9 12.0 23.0 30.0 37.0 102.0 
CO, mg/m3 0.8 ± 0.2 0.5 0.7 0.8 0.9 1.6 
O3, μg/m3 58.7 ± 24.8 12.9 37.9 53.5 75.5 144.0 

Meteorological factors 
Temperature, ◦C 23.6 ± 5.4 3.5 19.2 25.0 28.2 33.0 
Relative humidity, % 76 ± 12.4 28.0 70.0 78.0 85.0 100.0 
Atmospheric pressure, hPa 1005.8 ± 6.5 986.8 1000.9 1005.3 1010.6 1027.3 
Wind speed, m/s 1.9 ± 0.7 0.4 1.3 1.7 2.2 5.9 
Sunshine duration, hour 5.1 ± 3.8 0.0 1.3 5.2 8.7 12.3 

Abbreviation: SD, standard deviation; PM1, particulate matter with aerodynamic diameter ≤1 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; 
PM10, particulate matter with aerodynamic diameter ≤10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone. 

Fig. 1. Spearman correlation matrix between levels of ambient air pollutants 
and meteorological conditions in Shenzhen, China, 2015–2017. Abbreviations: 
PM1, particulate matter with aerodynamic diameter ≤1 μm; PM2.5, particulate 
matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with 
aerodynamic diameter ≤10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, 
carbon monoxide; O3, ozone; Tem, temperature; Rh, relative humidity; Ap, 
atmospheric pressure; Ws, wind speed; Sd, sunshine duration. 
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3.5. Sensitivity analysis 

Table S5 presents the results of the sensitivity analyses, suggesting 
that the PM-CVD associations were consistently observed after changing 
the above-mentioned regression modelling parameters. For instance, for 
each 10-μg/m3 rise in PM1, ORs of CVD hospitalizations ranged only 
from 1.063 to 1.082. 

4. Discussion 

To the best of our knowledge, PM1-associated health effects were 
little known in China owing to lack of ground PM1 measurements. In this 
case-crossover study, we evaluated short-term effects of ambient size- 
specific PMs (i.e., PM1, PM2.5 and PM10) on hospital admissions for 

CVDs. Compared with PM2.5 and PM10, PM1 exhibited a generally 
stronger association with hypertension but not with IHD and stroke 
during full year. Seasonal analysis revealed significantly larger PM- 
associated risks among IHD patients in cold months. Moreover, PM- 
hospitalization associations varied slightly among sex- and age-specific 
subpopulations. 

Our results support the hypothesis that hospital admissions for CVDs 
are associated with short-term exposure to ambient fraction-specific 
PMs, especially PM1. This finding was highly consistent with many 
time-series and case-crossover studies study in China (Amsalu et al., 
2019; Chen et al., 2020a; Li et al., 2019; Liu et al., 2018, 2020). Besides, 
a rigorously controlled study on particulate air pollution and circulating 
biomarkers reported that size fractions with the strongest associations 
were <1 and 0.25–0.40 μm for aerodynamic diameters (Chen et al., 

Fig. 2. Season-specific odds ratios (95% CIs) of hospitalization for total cardiovascular diseases associated with per 10-μg/m3 increase in exposure to PM1, PM2.5, and 
PM10 at various lag days. Notes: *p < 0.05, **p < 0.01. Abbreviations: CI, confidence interval; PM1, particulate matter with aerodynamic diameter ≤1 μm; PM2.5, 
particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter ≤10 μm. 

Fig. 3. Exposure-response curves for PM1, PM2.5 and PM10 associated with hospital admission for total cardiovascular diseases at lag 03 days, respectively. Ab-
breviations: CI, confidence interval; PM1, particulate matter with aerodynamic diameter ≤1 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; 
PM10, particulate matter with aerodynamic diameter ≤10 μm. 
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2015). The biological mechanisms of short-term particulate effects on 
circulatory system might be indirect inflammatory responses induced by 
inhaled pollutants (Brook et al., 2004, 2010). Given that smaller parti-
cles may have higher order of magnitudes in particle surface area, par-
ticulate number concentration, and level of adsorbed or condensed toxic 
air pollutants per unit mass (Caggiano et al., 2019; Kwon et al., 2020), 

they were easier to enter lung-based cells and systemic circulation, 
causing more obvious adverse effects on CVD patients (Farina et al., 
2013; Filep et al., 2016). 

The magnitude of evidence supporting associations between PM2.5 
and CVDs has grown substantially in past decades (Chang et al., 2015; 
Liu et al., 2017; Rajagopalan et al., 2018). In our study, the estimated 

Fig. 4. Odds ratios (95% CIs) for hospitalization associated with per 10-μg/m3 increase in exposure to PM1, PM2.5 and PM10 among subgroups stratified by cause, 
gender, and age. Notes: *p < 0.05; **p < 0.01; ***p < 0.001; a p-value for difference between subgroups. Abbreviations: CI, confidence interval; PM1, particulate 
matter with aerodynamic diameter ≤1 μm; PM2.5, particulate matter with aerodynamic diameter ≤2.5 μm; PM10, particulate matter with aerodynamic diameter 
≤10 μm. 
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effects associated with a 10-μg/m3 increment of PM2.5 concentrations 
was 4.4% at lag 03 days for CVD hospitalizations, and 8.3% at lag 3 days 
for hypertension admissions, respectively. Similarly, for per 10-μg/m3 

rise in PM2.5 at lag 0 day, a 0.26% and a 0.80% increase for CVD hos-
pitalizations were reported by a nationwide investigation in 184 major 
Chinese cities (Tian et al., 2019) and by a study of 202 US counties (Bell 
et al., 2008), respectively. In Canada, research using the same 
case-crossover design with time-stratified strategy linked a 7% increase 
in the risk of emergency department visits for hypertension with an IQR 
(6.2 μg/m3) rise in PM2.5 concentrations (Szyszkowicz et al., 2012). 
Maybe because of the variations in study population, levels of PM2.5, 
meteorological factors, socioeconomic status, and geographical condi-
tions, the intensity of PM2.5-CVD associations varied by studies and lo-
cations (Basu et al., 2019; Chen et al., 2017b; Dominici et al., 2006). 

The associations between particulates pollutants and CVD sub-cause 
groups are inconsistent, with lots of controversy regarding stroke 
(Crichton et al., 2016; Gu et al., 2020; Shah et al., 2015). In this study, no 
associations between size-specific PMs and stroke admission were 
observed. Two possible explanations for the finding are as follows. First 
and foremost, on account of pathogenesis, stroke can be divided into 
hemorrhagic and ischaemic stroke (Liu et al., 2017). The short-term 
exposure to ambient particulate pollutants have been reported to be 
associated with ischaemic stroke but not with hemorrhagic stroke (Gu 
et al., 2020; Liu et al., 2017; Tian et al., 2019). In our study, due to the 
insufficient number of stroke patients, we did not distinguish the type of 
stroke, which may lead to much weaker or null effects. Additionally, the 
characteristics of study population and location might partly affect 
PM-stroke association in this study (Newell et al., 2017; Yusuf et al., 
2020). For instance, Shenzhen has a large number of migrant residents 
with a young age structure (Yang et al., 2015), giving rise to incon-
spicuous effects of PMs on human health (Chen et al., 2017b; Yang et al., 
2019). 

Many PM-CVD epidemiologic experiments have widely explored the 
threats of sex and age to the effects (Brook et al., 2010; George et al., 
2015), which suggested elderly individual is at higher risk of short-term 
particle exposure but modification by sex is not well consistent 
(Clougherty, 2010; Hu et al., 2018). In our study, PM-CVD associations 
were more robust among the elderly and male, but we did not identify a 
significant heterogeneity between these subpopulations. There is a 
consensus that pre-existing diseases (e.g., diabetes) and the degradation 
of cardiovascular function in the elderly may elevate PM-associated risk 
of hospitalization for CVDs (Brook et al., 2004; Yang et al., 2018; Zhang 
et al., 2020b). Our sex-stratified results were echoed in several previous 
studies, such as time-series analysis in China (Chen et al., 2020b) and 
Cyprus (Middleton et al., 2008), and population-based survival research 
in Canada (Bai et al., 2019). Conversely, two single-city investigations in 
Shanghai and Beijing reported slightly stronger effects of particle 
pollution for females compared with males (Kan et al., 2008; Tian et al., 
2018). Overall, sex-specific effects may vary by experimental design and 
study locations. Further research is needed to explore the source of sex 
discrepancy in particulate effects. 

Coincided with many prior studies (Bell et al., 2008; Chang et al., 
2015; Kan et al., 2008), our seasonal analysis also observed positive 
PM-hospitalization associations in cold season. This may be due to the 
reasons as follows. First, the relatively high PM2.5 concentrations and 
PM1/PM2.5 ratios existed in cold months (Chen et al., 2018; Jiao et al., 
2020). Besides, the sources and constituents of particles may vary by 
season and region (Peng et al., 2005; Wei et al., 2019), and the most 
toxic ambient PM had a winter or summer maximum in southern China 
(Chen et al., 2013). Notably, we observed a higher PM1-induced risk in 
warm months (April–September) among CVD patients aged 65+ years, 
which was in agreement with a provincial study in Zhejiang, China 
suggesting stronger associations of PM1 with CVD mortality in 
June–September (Hu et al., 2018). Due to complex composition of at-
mospheric particulates and data unavailability, our study cannot 
analyze the relationship in detail. Research on PM changes over time is 
warranted in the future to explain the seasonal variations 
comprehensively. 

We acknowledged our study had several limitations. First, owing to 
lack of residential address, we could not confirm that all admissions 
lived in the study area, which would cause exposure measurement error. 
However, hospital admission has been validated as an effective outcome 
in assessing PM-associated health effects in previous epidemiological 
studies (Dominici et al., 2006; Lanzinger et al., 2016; Son et al., 2013; 
Tian et al., 2019). Second, we used station-based PM measurements 
instead of individual exposures because data on patients’ addresses were 
not available. Such an assignment method could inevitably result in 
exposure misclassification (Zhang et al., 2020b), however, which tends 
to be random and generally biases the effect estimates downward (Tian 
et al., 2019; Zhang et al., 2020a). Third, the confounding effects of 
time-invariant covariates (e.g., obesity status, smoking history) could 
have been commendably controlled through the TSCC study design. But, 
the TSCC design may allow for selection bias and confounding by 
time-varying factors. Additionally, our CVD cases were originated from 
one single hospital, which might hinder the extrapolation of the results 
to other regions. 

5. Conclusions 

In summary, our study provided case-crossover evidence that short- 
term exposure to size-specific PMs, PM1 in particular, may trigger the 
incidence of CVD hospitalization as well in Chinese less-polluted 
megacities. PM1-associated risk may vary by season and among sub-
populations. Given the sparse evidence of sub-micrometric particles, 
more PM1-health investigations are thus needed in the future to better 
depict health impacts associated with ambient fine particulate air 
pollution. 

Fig. 5. Season-specific odds ratios (95% CIs) for hospital admission associated 
with per 10-μg/m3 increase in exposure to PM1, stratified by cause, sex and age. 
Notes: *p < 0.05; **p < 0.01; a p-value for difference between the effects in 
warm and cold season. Abbreviations: CI, confidence interval; PM1, particulate 
matter with aerodynamic diameter ≤1 μm. 
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