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GRAPHICAL ABSTRACT
Background: Emerging research suggested an association of
early-life particulate air pollution exposure with development of
asthma in childhood. However, the potentially differential
effects of submicron particulate matter (PM; PM with
aerodynamic diameter <_1 mm [PM1]) remain largely unknown.
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Objective: This study primarily aimed to investigate
associations of childhood asthma and wheezing with in utero
and first-year exposures to size-specific particles.
Methods: We conducted a large cross-sectional survey among
5788 preschool children aged 3 to 5 years in central China.
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Abbreviations used

CCHH: China, Children, Homes, Health

HR: Hazard ratio

NDVI: Normalized difference vegetation index

PM: Particulate matter

PM1: PM with aerodynamic diameter less than or equal to 1 mm

PM2.5: PM with aerodynamic diameter less than or equal to 2.5 mm

PM10: PM with aerodynamic diameter less than or equal to 10 mm
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In utero and first-year exposures to ambient PM1, PM with
aerodynamic diameter less than or equal to 2.5 mm, and PM
with aerodynamic diameter less than or equal to 10 mm at
1 3 1-km resolution were assessed using machine learning–
based spatiotemporal models. A time-to-event analysis was
performed to examine associations between residential PM
exposures and childhood onset of asthma and wheezing.
Results: Early-life size-specific PM exposures, particularly
during pregnancy, were significantly associated with increased
risk of asthma, whereas no evident PM-wheezing associations
were observed. Each 10-mg/m3 increase in in utero and first-year
PM1 exposure was accordingly associated with an asthma’s
hazard ratio in childhood of 1.618 (95% CI, 1.159-2.258; P 5
.005) and 1.543 (0.822-2.896; P 5 .177). Subgroup analyses
suggest that short breast-feeding duration may aggravate PM-
associated risk of childhood asthma. Each 10-mg/m3 increase in
in utero exposure to PM1, for instance, was associated with a
hazard ratio of 2.260 (1.393-3.666) among children with 0 to 5
months’ breast-feeding and 1.156 (0.721-1.853) among those
longer breast-fed.
Conclusions: Our study added comparative evidence for
increased risk of childhood asthma in relation to early-life PM
exposures, highlighting stronger associations with ambient PM1

than with PM with aerodynamic diameter less than or equal to
2.5 mm and PM with aerodynamic diameter less than or equal
to 10 mm. (J Allergy Clin Immunol 2021;148:771-82.)

Key words: Fine particulate matter, PM1, early-life exposure,
asthma, wheezing, preschool children

Childhood asthma gives rise to great health burden from
chronic respiratory diseases and substantially affects quality of
life among children across the globe.1,2 It was widely acceptable
that development of childhood asthmatic symptoms could largely
result from gene-environment interaction.3-5 Ambient air pollu-
tion, particulate matter (PM) in particular, has been identified as
an important environmental determinant of asthma onset and
exacerbation in recent systematic reviews.6-8 However, findings
regarding PM-asthma association in children exhibited great het-
erogeneity and inconsistency across studies.

Targeting critical exposure windows of particulate air pollution
could largely help develop effective measures of prevention and
intervention for childhood asthma. Emerging research9,10 has
linked particulate air pollution exposure (eg, inhalable and fine
particles, namely PM with aerodynamic diameter <_10 mm
[PM10] and PM with aerodynamic diameter <_2.5 mm [PM2.5])
during early-life time with later asthma and allergies in children,
whereas most of these studies were conducted in developed areas
with low pollution levels such as North America and Europe.6,7

Related evidence was largely sparse in developing countries
such as China, where most locations have been experiencing
serious particulate air pollution and rapid increase in childhood
asthma during recent decades.1,11,12

Size-fractional particles may have differential toxic effects on
respiratory health in children. As suggested in existing epidemi-
ologic investigations, smaller particles (eg, submicron and ultra-
fine PM) generally exhibited more adverse health effects in both
short- and long-term exposures.13-16 Monitoring and modeling
data estimated that PM1 (PM with aerodynamic diameter <_1.0
mm) may contribute a large proportion of ambient PM2.5 and
PM10.
17-20 Owing to a wide lack of ground PM1 measurements

worldwide, however, PM1-health investigations have been
sparsely conducted.21-23 Such research gap has largely hampered
in-depth understanding of PM-associated impacts on human cir-
culatory and respiratory systems, especially in early childhood.

We hypothesized that early-life exposures to submicron par-
ticulate air pollution may relate to the development of childhood
asthma. In this study, we thus performed a retrospective
investigation among preschool children inWuhan, China, playing
as a part of the phase II CCHH (the China, Children, Homes,
Health) study, and conceived a time-to-event analysis to examine
the associations of in utero and first-year exposures to size-
specific PMs (ie, PM1, PM2.5, and PM10) with childhood asthma
and wheezing. Individual residential exposure assessments at
1 3 1-km resolution were assigned by taking advantage of
satellite-based space-time models using machine learning
methods. Trimester-specific associations were assessed to iden-
tify potential vulnerablewindow, and stratified analyses were per-
formed by child sex, breast-feeding duration, as well as age of
first-ever incidence.
METHODS

Study design and participants
We conducted a cross-sectional questionnaire survey in Wuhan between

November and December 2019, which belongs to a part of phase II of the

CCHH study during the period 2019 to 2020. On the basis of a standard

questionnaire validated by a previous pilot study,24 the CCHH survey is

mainly designed to assess the impacts of household environmental exposures

on childhood asthma and rhinitis among Chinese preschool children.More de-

tails for the CCHH study can be found in several previous publications.24,25

The questionnaire and proposal for this study were approved by the Medical

Research Ethical Committee of School of Public Health, Fudan University.

In line with investigations of the phase I CCHH study through 2010 to

2012,25,26 we adopted a multistage sampling method to select participants.

Briefly, we investigated 14 kindergartens randomly selected from 7 urban dis-

tricts, which was chosen by lottery from 13 districts in Wuhan city. All pre-

school children in these kindergartens were included as the study subjects

by surveying their caregivers (eg, parents or grandparents) through a standard

questionnaire. These questionnaires were posted online through WeChat

quick response code and distributed to each survey participant by the child’s

teacher. The caregivers (eg, parents or grandparents) were asked to fulfill the

survey questionnaire under the online guidance. By taking full advantage of

online questionnaire platform, we could perform good quality control on

data collection.

Of 12,031 valid survey questionnaires originally returned, we picked out

8,387 preschool children aged 3 to 5 years. In linewith the research purpose of

this study, we further excluded 87 questionnaires by completeness and logic

checking with information of interest such as pregnancy week, birth date, and

residence address. Given that individual exposure assignments of ambient

particulate air pollution were available for Wuhan city only during the period

2014 to 2018, we additionally excluded 1999 children who were conceived



FIG 1. Geographical locations of participants’ residence address and estimated PM1 concentrations over

the pregnancy.
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before January 2014 and 513 resided outsideWuhan during the prenatal period

and the first year of life time. Finally, we included 5788 children for the

analysis in this study. Fig 1 shows geographical locations of residence address

for surveyed children in Wuhan city.
Ascertainment of asthma and wheezing incidence
Incidence of wheezing was defined as ‘‘has ever had the symptoms of

wheezing or whistling in the chest in the past,’’ and asthma was ascertained as

‘‘has ever had doctor-diagnosed asthma from birth to the survey.’’ We also

collected time information on onset of wheezing and asthma diagnosis by

asking the following 2 questions: (1) ‘‘At what ages has the child had

symptoms of wheezing or whistling?’’; (2) ‘‘How old was the child when first

diagnosed as asthma?’’ These above items regarding childhood wheezing and

asthmaweremodified from the International Study of Asthma andAllergies in

Childhood questionnaire.27,28
Exposure assessment for ambient air pollutants
Daily average concentrations in Wuhan through the period 2014 to 2018

for ambient PM1, PM2.5, and PM10 were estimated at a 1-km spatial reso-

lution using a well-developed machine learning–based method––space-

time extremely randomized trees model.29-33 As one of tree-based

ensemble learning approaches, extremely randomized trees model splits

nodes by randomly selecting cutoff points and uses all training samples

to grow trees instead of the bootstrap approach. In comparison to other

tree-based approaches (eg, decision tree and random forest), this model

could efficiently solve variance problems. Space-time extremely random-

ized trees well incorporates spatiotemporal information into extremely ran-

domized trees model through introducing the spatial autocorrelation
between PM observations weighted by geographical distance (space) and

temporal difference (time).

The space-time extremely randomized trees model showed good predictive

performance across mainland China, by well incorporating spatiotemporal

information of ground measurements, satellite-retrieved aerosol optical depth

(1-km resolution Multi-Angle Implementation of Atmospheric Correction

aerosol products), land use, topography, pollution emission, population, and

meteorological data. For monthly predicted estimates, validation results

showed they have a high correlation coefficient (R2) of 0.96 for PM1,
30 0.94

for PM2.5,
32 and 0.94 for PM10,

33 and a corresponding root-mean-square error

of 4.8 mg/m3, 5.1 mg/m3, and 11.1 mg/m3 with ground measurements, respec-

tively. In-situ measurements for daily PM1 for the years 2014 to 2018 were

gathered from 153 monitoring stations of the China Atmosphere Watch

Network (regulated by the China Meteorological Administration). And

ground measurements for daily PM2.5 and PM10 during the same period

were collected from 1497 stations of China National Urban Air Quality

Real-time Publishing Platform (regulated by the China National Environ-

mental Monitoring Center). More details of the modeling development could

be found in our previous publications.30-33

For each participant involved in this study, we first derived monthly mean

concentrations of size-specific PMs during the period 2014 to 2018 on the

basis of residence address for specific periods (eg, prenatal and 0-1-year-old)

from aforementioned 1 3 1-km gridded estimates. These monthly estimates

were then aggregated into average exposures for the entire pregnancy,

trimester-specific periods, and the first year after birth (0-1-year-old), through

further taking into account information on birth date and date of conception.

Prenatal and first-year PM exposures were assigned on the basis of

corresponding address information for specific periods. Such exposure

assessments could largely reduce exposure misclassification, through ac-

counting for participants’ residential movements. Similar calculatingmethods
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were adopted for exposure assessments of gaseous pollutants (eg, nitrogen

dioxide [NO2] and ozone [O3]) using city-average monthly measurements

from monitoring stations due to unavailability of satellite-derived data sets.
Covariates
In accordance with previous CCHH publications26,34,35 and related litera-

tures,7,9,10 we considered several sets of covariates in our analysis. These co-

variates included (1) child’s individual characteristics: the child’s sex (boy vs

girl), ethnicity (Han vs the minority), vaginal delivery (yes vs no), birth year

and season (winter [December to February] vs spring [March to May] vs sum-

mer [June to August] vs fall [September to November]), gestational weeks

(<37 weeks [preterm birth] vs >_37 weeks), birth weight (<2500 g [low birth

weight] vs >_2500 g), and breast-feeding duration (0-5 months vs >_6 months);

(2) family or maternal characteristics: family history of atopy (yes vs no),

maternal education attainment (high school and below vs university and

above), maternal smoking status (never vs former or current), area-based in-

come (low vs medium vs high); (3) residential environment: household reno-

vation during the early lifetime (yes vs no), indoor passive smoke exposure

(yes vs no), residence-located area (urban vs suburban/rural district), and

early-life residence greenness (measured by normalized difference vegetation

index [NDVI]). We derived monthly NDVI estimates at a 1-km spatial resolu-

tion for assessment of exposure to green space surrounding the residential

address, from the Moderate-Resolution Imaging Spectro-Radiometer in the

National Aeronautics and Space Administration’s Terra Satellite.
Statistical analysis
Descriptive statisticswere summarized as counts (proportions) andmeans6

SD, as appropriate. Pearson chi-square tests and t tests were performed to

compare distributions of covariates between groups of asthma/wheezing cases

and controls. We conceived a time-to-event study design and used Cox propor-

tional hazards models to assess associations of asthma and wheezing incidence

with early-life (prenatal and first-year) PM exposures.10,36 Follow-up timewas

measured as each child’s age in months from birth until incidence of the

outcome of interest (ie, diagnosis of childhood asthma and first onset of

wheezing), or end of follow-up (survey time in 2019).10,37We tested the propor-

tionality of hazards assumption by evaluating the weighted Schoenfeld resid-

uals38 in our Cox modeling analysis. Tests of proportional hazards

assumptions showed no violations, with all P values more than .05. In our

main analytic models, we separately included prenatal and first-year size-spe-

cific PM exposures in the regression models as terms of continuous variables.

Associations were estimated through hazard ratios (HRs) and their 95% CIs,

associatedwith per 10-mg/m3 increase in exposures to size-specific PMs. Alter-

natively, we used a natural cubic spline termwith 3 degrees of freedom for PM1,

PM2.5, and PM10 to model dose-response curves.23,39 Nonlinearity in PM-

asthma/wheezing associationswas checked visually and tested using likelihood

ratio tests.40 Collinearity in Cox models was assessed through the statistic of

variance inflation factor, and our analyses did not show evident collinearity

because variance inflation factors for all covariates were less than 2.

We performed several subgroup analyses stratified by sex, breast-feeding

duration, and age at diagnosis to identify potential vulnerability. To ensure

sufficient statistical power between subgroups, we used 6 months’ breast-

feeding as a stratum cutoff, given that about 60% children in our investigation

were breast-fed for 61months. Sensitivity analyses with various cutoffs were

also performed. Two-sample z tests41,42 were used to examine the potential ef-

fect modification, based on stratum-specific point estimates (b 5 lnHR) and

their SEs. For instance, effect differences between sex could be tested using

the following formula:

z 5
bgirl2bboyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

girl1SE2
boy

q

We checked the robustness of our main findings through some sensitivity

analyses. First, we conducted 2-pollutant models by simultaneously including

one of gaseous pollutants (NO2 and O3) and size-specific PMs in our models, so

as to eliminate the potential confounding effects of exposures to gaseous
pollutants on development of childhood asthma.Differences between nested sin-

gle- and 2-pollutant models were examined through the likelihood ratio test.40

Second, we adjusted for the potential confounding effects of early-life residen-

tial greenness exposure, measured by satellite-derived NDVI at a 1-km spatial

resolution. Third, we included both in utero and first-year PM exposures for

mutual adjustments in our analytic models.9 Finally, we restricted the analyses

to Han-ethnicity and full-term (gestational age >_37 weeks) children only.

As a secondary analysis of our time-to-event approach, we alternatively

adopted modified Poisson regression43 with robust (sandwich) estimation of

variance applied to binary and nonrepeated outcomes. Such a method allows

estimation of relative risk when the rare disease assumption is violated, and

has been well applied in recent retrospective cohort analysis44-46 with rare

outcomes.

R software (version 4.0.0, R Foundation for Statistical Computing, Vienna,

Austria) was used for all analyses, with ‘‘survival’’ package for the time-to-

event modeling, ‘‘splines’’ package for natural cubic spline smoothing, and

‘‘car’’ package for collinearity diagnosis. All tests were conducted 2-sided,

and effects with P less than .05 were considered statistically significant.
RESULTS

Data description
Table I summarizes the characteristics of 5788 children

involved in this retrospective cohort. Included children were
aged from 3 to 5 years (mean age, 4.1 6 0.6 years), with 3017
(52.1%) being boys. Only 2554 (44.1%) children were born
from vaginal delivery. A total of 363 (6.3%) children were pre-
term births, and 278 (4.8%) were born with low birth weight.
A total of 176 children reported asthma diagnosis, and boys ac-
counted for about 70%. Among the 521 children who ever had
wheezing, 320 (61.4%) were boys. A total of 3429 (59.2%) chil-
dren experienced 61 months’ breast-feeding, whereas around
half asthma (50.6%) andwheezing (48.2%) cases were from these
longer breast-fed. Compared with baseline, a higher proportion of
cases were observed among children with the family history of
atopy, house renovation experience, indoor smoke exposure,
and household dampness during early life (in utero or first year).

Table II depicts the summary distributions of in utero and first-
year exposures to ambient air pollutants. During the entire preg-
nancy, particulate air pollutants estimated by spatiotemporal
models were averaged at 42.5 mg/m3 (range, 25.1-68.6) for
PM1 (Fig 1), 64.9 mg/m3 (41.4-109.3) for PM2.5, and 117.4 mg/
m3 (80.4-173.4) for PM10, respectively. Accordingly, station-
based measurements showed an in utero exposure (mean 6 SD)
of 49.4 6 2.6 mg/m3 for NO2 and 95.2 6 2.6 mg/m3 for ozone.
Particulate pollutants were highly correlated with NO2

(Spearman correlation coefficient [r] ranging from 0.67 to
0.82), but had a weak correlation with O3 during the pregnancy
and child’s first year of lifetime (see Fig E1 in this article’s Online
Repository at www.jacionline.org). In utero and first-year PM ex-
posures were only lowly or moderately correlated (0.26 <_ r <_
0.53). The first year of children’s lifetime saw a consistent reduc-
tion in both particulate and gaseous air pollution levels. For
instance, PM1 showed a decline of 5.1 mg/m3 and O3 decreased
by 2.4 mg/m3. Distributions of trimester-specific PM concentra-
tions are summarized in Table E1 in this article’s Online Repos-
itory at www.jacionline.org.
Associations by exposure window
Table III outlines associations of in utero and first-year PM ex-

posures with childhood asthma and wheezing. PM exposures,
particularly during pregnancy, were strongly associated with

http://www.jacionline.org
http://www.jacionline.org


TABLE II. Summary distributions of in utero and first-year exposures to ambient air pollutants among children included in the

study

Air pollution concentration Mean 6 SD Min

Percentiles

MaxP25 P50 P75

During entire pregnancy (mg/m3)

PM1* 42.5 6 7.7 25.1 35.7 40.5 49.7 68.6

PM2.5* 64.9 6 12.2 41.4 54.8 61.8 75.8 109.3

PM10* 117.4 6 14.7 80.4 104.9 115.1 130.4 173.4

NO2� 49.4 6 2.6 42.2 47.5 49.3 51.7 62.8

O3� 95.2 6 6.8 56.0 89.2 94.3 100.7 120.5

During age 0-1 y (mg/m3)

PM1* 37.4 6 3.1 23.3 35.5 37.1 38.9 61.2

PM2.5* 56.5 6 4.5 41.1 53.4 55.9 58.7 91.6

PM10* 105.7 6 6.7 82.1 101.8 104.8 108.9 145.1

NO2� 47.7 6 1.5 45.5 46.8 47.6 47.8 51.8

O3� 92.8 6 4.3 82.9 89.3 92.0 97.0 100.5

*Spatiotemporal estimates based on machine learning method.

�Station-average concentration.

TABLE I. Characteristics of children included in study

Characteristic

All children

(n 5 5788)

Diagnosed with asthma Ever had wheezing

Yes (n 5 176) No (n 5 5612) P value Yes (n 5 521) No (n 5 5267) P value

Child

Boys, n (%) 3017 (52.1) 123 (69.9) 2894 (51.6) <.001 320 (61.4) 2697 (51.2) <.001

Age (y), mean 6 SD 4.1 6 0.6 4.2 6 0.6 4.1 6 0.6 .156 4.2 6 0.6 4.1 6 0.6 .088

Vaginal delivery, n (%) 2554 (44.1) 75 (42.6) 2479 (44.2) .739 202 (38.8) 2352 (44.7) .011

Born in year 2014 and 2015, n (%) 3421 (59.1) 111 (63.1) 3310 (59.0) .313 323 (62.0) 3098 (58.8) .174

Born in warm season, n (%) 2966 (51.2) 82 (46.6) 2884 (51.4) .239 272 (52.2) 2694 (51.1) .678

Preterm birth, n (%) 363 (6.3) 16 (9.1) 347 (6.2) .159 44 (8.4) 319 (6.1) .040

Low birth weight, n (%) 278 (4.8) 8 (4.5) 270 (4.8) 1.000 41 (7.9) 237 (4.5) <.001

Han ethnicity, n (%) 5563 (96.1) 170 (96.6) 5393 (96.1) .892 496 (95.2) 5067 (96.2) .313

Breast-feeding duration >_6 mo, n (%) 3429 (59.2) 89 (50.6) 3340 (59.5) .021 251 (48.2) 3178 (60.3) <.001

Family or maternal characteristics

Maternal smoking status (current and former), n (%) 170 (2.9) 8 (4.5) 162 (2.9) .291 23 (4.4) 147 (2.8) .050

Maternal education with university and above, n (%) 4408 (76.2) 145 (82.4) 4263 (76.0) .060 424 (81.4) 3984 (75.6) .004

Middle and high household income, n (%) 4672 (80.7) 143 (81.2) 4529 (80.7) .933 413 (79.3) 4259 (80.9) .412

Family history of atopy, n (%) 1150 (19.9) 50 (28.4) 1100 (19.6) .005 165 (31.7) 985 (18.7) <.001

Residential environment

Living in urban area, n (%) 5590 (96.6) 171 (97.2) 5419 (96.6) .826 498 (95.6) 5092 (96.7) .237

House renovation during pregnancy or age 0-1 y, n (%) 1356 (23.5) 55 (31.2) 1301 (23.3) .027 142 (27.3) 1214 (23.2) .056

Residence NDVI during pregnancy and age 0-1 y,

mean 6 SD

0.261 6 0.055 0.255 6 0.056 0.261 6 0.055 .161 0.262 6 0.052 0.261 6 0.055 .830

Passive smoke exposure, n (%) 1725 (29.8) 65 (36.9) 1660 (29.6) .044 190 (36.5) 1535 (29.1) <.001

Household visible mold or damp, n (%) 1051 (18.2) 48 (27.3) 1003 (17.9) .002 139 (26.7) 912 (17.3) <.001

Warm season, April to September.
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increased risk of asthma, whereas no evident associations were
observed between wheezing and exposures to size-specific
PMs. Each 10-mg/m3 increase in in utero and first-year PM1 expo-
sure was accordingly associated with an asthma HR of 1.618
(95% CI, 1.159-2.258; P 5 .005) and 1.543 (0.822-2.896; P 5
.177). Lower PM2.5- and PM10-related risks were consistently
found, with corresponding HRs of 1.314 (1.070-1.614) and
1.236 (1.047-1.458) associated with PM2.5 and PM10 exposures
during pregnancy. Significant effect of first-year exposure on
asthma was identified only in PM10, with an HR of 1.409
(1.037-1.915; P 5 .028).

Fig 2 demonstrates risks of childhood asthma and wheezing
associated with trimester-specific PM exposures. Compared
with PM2.5 and PM10, PM1 was more strongly associated with
childhood asthma, with significant increases in risk during the
first (HR, 1.283;P5.024) and third (HR, 1.225;P5 .046) trimes-
ters. Marginally significant (.05 < P <.1) PM-asthma associations
were also observed for exposures of PM2.5 during the early
trimester, PM1 during the second trimester, and PM10 during
the late trimester. In terms of wheezing, we observed a marginally
significant association (P 5 .056) with PM1 only during the first
trimester. Detailed HR estimates associated with trimester-
specific PM exposures are presented in Table E2 in this article’s
Online Repository at www.jacionline.org.

Fig 3 illustrates concentration-response curves between PM ex-
posures during pregnancy and risks of childhood asthma and
wheezing. Visual checking and nonlinearity tests (see Table E3
in this article’s Online Repository at www.jacionline.org; all

http://www.jacionline.org
http://www.jacionline.org


TABLE III. Estimates of HRs (with 95% CIs) for childhood asthma and wheezing, associated with per 10-mg/m3 increase in in utero

and first-year exposures to PM1, PM2.5, and PM10

Exposures

Asthma Wheezing

HR (95% CI) P value HR (95% CI) P value

Entire pregnancy

PM1 1.618 (1.159-2.258) .005 1.020 (0.834-1.246) .850

PM2.5 1.314 (1.070-1.614) .009 0.992 (0.876-1.124) .904

PM10 1.236 (1.047-1.458) .012 0.962 (0.872-1.063) .447

First year (0-1 y)

PM1 1.543 (0.822-2.896) .177 1.214 (0.831-1.771) .316

PM2.5 1.358 (0.876-2.104) .171 1.148 (0.880-1.499) .309

PM10 1.409 (1.037-1.915) .028 1.119 (0.935-1.338) .219

All Cox models adjusted for a list of covariates including (1) child’s individual characteristics: the child’s sex, ethnicity, vaginal delivery, birth year and season, gestational weeks,

birth weight, and breast-feeding duration; (2) family or maternal characteristics: family history of atopy, maternal education attainment, maternal smoking status, area-based

income; and (3) residential environment: household renovation during the early life time, indoor passive smoke exposure, and residence-located area.
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P >.05) largely supported the evidence of linear increases in risks
associated with in utero PM exposures, especially for the outcome
of asthma.

Associations by subgroup. Fig 4 gives subgroup-specific
HRs of asthma associated with in utero PM exposures, stratified
by child sex, breast-feeding duration, and age at diagnosis. Expo-
sures to size-specific PMs during pregnancy showed significant ef-
fects on boys only, children with 0 to 5 months’ breast-feeding, and
being first diagnosed before being 3 years old. Despite a higher
PM1-associated risk among boys, we observed comparable PM2.5/
PM10-asthma associations between sexes. We observed suggestive
evidence that short breast-feeding duration may aggravate PM-
associated risks of childhood asthma, with P value of .052, .049,
and .099 for the interaction of breast-feeding duration with PM1,
PM2.5, and PM10, respectively. Each 10-mg/m

3 increase in in utero
exposure to PM1, for instance, was associated with an HR of 2.260
(1.393-3.666) among children with 0 to 5 months’ breast-feeding
and 1.156 (0.721-1.853) among children with 61 months’ breast-
feeding. Similar results were found when using 3 months’ breast-
feeding as subgroup cutoff (see Table E4 in this article’s Online
Repository at www.jacionline.org), and additionally stratifying
breast-feeding durations into 3 strata of less than 1, 1 to 6, and
more than 6months (seeTableE5 in this article’sOnlineRepository
at www.jacionline.org). Early development of asthma in childhood
exhibitedmore robust associationswith prenatal PMexposure. Spe-
cifically, PM1-associated HR was 1.785 (1.160-2.747) and 1.400
(0.824-2.379) for children being diagnosed before and after age 3
years. Generally similar findings were also revealed in subgroup an-
alyses for PM-asthma associations based on first-year exposures
(see Fig E2 in this article’s Online Repository at www.jacionline.
org), showing stronger associations among boys, children with
shorter breast-feeding, and earlier age at diagnosis. Additional strat-
ified analyses by breast-feeding duration (see Table E6 in this arti-
cle’s Online Repository at www.jacionline.org) showed
significantly higher risks of asthma associated with postnatal PM
exposures in children breast-fed less than 1 month only.

Fig 5 illustrates subgroup analyses of PM-asthma associations
stratified by housing environmental factors (ie, passive smoke
exposure, household mold or damp, and house renovation). Inter-
estingly, we observed significantly increased HRs only in

http://www.jacionline.org
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FIG 3. Concentration-response curves (smoothing by natural cubic spline function with df 5 3) between

exposures to size-specific particles during pregnancy and risks of childhood asthma and wheezing. df, De-
grees of freedom.
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nonexposure subgroups. Each 10-mg/m3 increase in in utero
exposure to PM1, for instance, was associated with childhood
asthma risks of 1.898 (1.245-2.894), 1.639 (1.105-2.433), and
1.923 (1.283-2.882) among mothers/children who were not
exposed to early-life passive smoke, household dampness, and
house renovation, respectively. Despite these disparities in associ-
ations between subgroups, we failed to identify any significant
modifying effects (all P values >.1).
Sensitivity analyses
Sensitivity analysis shows the robustness of our main findings

on PM-asthma associations. Estimated risks associated with
prenatal PM exposures did not change substantially (all P values
>.5 for likelihood ratio tests), after separately introducing gaseous
pollutants (ie, NO2 and O3), NDVI, and first-year PM in the Cox
regression model for additional adjustment (see Table E7 in this
article’s Online Repository at www.jacionline.org). Associations
also kept unchanged when restricting the analyses to Han-
ethnicity and full-term (gestational age >_37 weeks) children
only (see Table E8 in this article’s Online Repository at www.
jacionline.org). In compassion to our time-to-event analysis,
risk estimates for childhood asthma and wheezing were highly
comparable by performing a secondary analysis of modified Pois-
son regression approach (see Tables E9 and E10 in this article’s
Online Repository at www.jacionline.org).
DISCUSSION
To our knowledge, this is the first study assessing associations

of prenatal and first-year exposure to ambient PM1 with first-ever
incidence of asthma and wheezing in children. We observed
strong evidence that early-life particulate air pollution exposures
(particularly submicrometric PM) increased the risk of childhood
asthma among preschool children. Besides, we identified poten-
tial modifying effects by breast-feeding duration, suggesting
longer breast-feeding may lower asthma risk in children exposed
to particulate air pollutants. Our findings may have significant
public health implications in informing environmental and health
care policymakers to make greater efforts in clean air actions,
particularly in highly polluted Chinese megacities, so as to reduce
the burden of childhood asthma associated with ambient particu-
late air pollution.

We observed increased risks of childhood asthma associated
with exposures to PM2.5 and PM10 during early life (eg, in utero
and first year since birth). This finding generally echoed with
several birth cohort studies conducted in Canada9,47 and the
United States36,48,49 and Taiwan province of China,10 while great
heterogeneity still existed across studies. Clark et al9 found signif-
icant effects of in utero and first-year exposures to PM10 (HR, 1.09
[1.05-1.13] and 1.07 [1.03-1.12] for a 1-mg/m3 increase) on
asthma development, but these associations were not identified
for PM2.5 using both inverse distance weighted method and
land use regression for exposure assessment. A cross-sectional
investigation in Shanghai26 showed a significant PM10-asthma
relation for first-year exposure rather than prenatal exposure. In
addition, some research34,37 linked no associations of childhood
asthma with entire pregnancy’s PM exposure, but found evidence
for specific trimesters. Underlying reasons for the substantial
discrepancy in estimated association of interest were complex,
but could be in part attributed to between-study differences
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including study designs, methods used for exposure assignment,
population vulnerability, as well as asthma ascertainment. Envi-
ronmental differences across study locations such as pollution
levels and sources, PM components, urbanity, and greenness
within cities may also relate to this discrepancy. Similar mixed
findings were also elucidated for gaseous air pollutants such as
NOx and SO2

26,36,47 when assessing air pollution-asthma associ-
ations. In this investigation, we observed a significant association
of childhood asthma only with first-year PM10 exposure. This
result could be possibly related to disparity in exposure concen-
trations between size-specific PMs. Relatively narrower ranges
in PM1 and PM2.5 exposures (Table II) may have hampered the
statistical power in detecting their associations with asthma to
some extent.

For a 10-mg/m3 rise in prenatal PM exposure, our time-to-event
analysis associated an HR of 1.618 (1.159-2.258), 1.314 (1.070-
1.614), and 1.236 (1.047-1.458) for childhood asthma with
PM1, PM2.5, and PM10, respectively, suggesting larger effects of
smaller particles. Generally consistent results were seen in a large
cross-sectional investigation investigating 59,754 Chinese chil-
dren aged 2 to 17 years in 7 northeast cities.50 Yang et al assessed
the liaison between 4-year average air pollution and doctor-
diagnosed asthma, and they found an odds ratio of 1.56 (1.46-
1.66) and 1.50 (1.41-1.59) corresponding to a 10-mg/m3 increase
in PM1 and PM2.5. In addition to childhood or adolescent asthma,
there are emerging epidemiologic evidence14,21,51,52 showing
more adverse cardiopulmonary effects associated with PM1 in
comparison with PM2.5 and PM10. In a case-crossover study,52

for instance, short-term risks of hospital admission for respiratory
diseases increased by 9% (4%-14%) and 6% (2%-10%) associ-
ated with per 10-mg/m3 rise in exposure to PM1 and PM2.5,
respectively. In terms of long-term assessment, the 33 Commu-
nities Chinese Health Study14 demonstrated that PM1 may play
a greater role than PM2.5 in associations with prevalence of
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cardiovascular diseases, with an estimated risk of 1.12 (1.05-1.20)
versus 1.06 (1.01-1.11) per 10-mg/m3 increase. To date, very
limited evidence has focused on health assessments of in utero
PM1 exposure as well as its constituents on offspring’s early-
life organ development.53-57 Despite the fact that DNA methyl-
ation could be possibly one of underlying pathogenic
pathways,58-60 maternal PM1-induced toxic effects on offspring’s
heart and lung development still remain largely unknown from the
perspective of biological mechanisms. More laboratory and
population-based studies are urgently warranted for better under-
standing of the adverse health effects caused by ambient submi-
crometric and ultrafine particulate exposure.

Only a few studies7,34,49 have investigated the sensitive win-
dows of childhood asthmatic symptoms in association with
early-life air pollution exposure, while findings differed substan-
tially. A large cohort study37 investigated 160,641 singleton live
births occurring in Toronto, and found significant associations
of asthma with air pollutants including ultrafine particles,
PM2.5, and NO2 only in the second trimester. A cross-sectional
study of 2598 preschool children in China showed mixed results
in sensitive trimesters,34 but aMexican birth cohort study61 of 552
mother-child pairs identified an association between childhood
wheeze and prenatal PM2.5 exposure in the first trimester only.
Our trimester-specific analyses showed much smaller effect esti-
mates than the entire pregnancy, and did not identify clear vulner-
able periods. By incorporating distributed lag modeling strategy,
several researchers performed in-depth analysis of sensitive win-
dows based on gestational weeks.10,48,49 A Chinese birth cohort
study10 including 184,604 children in Taiwan found PM2.5-
asthma associations during gestational weeks 6 to 22, with the
highest risk occurring at gestational week 12. Another US cohort
study48 in Boston included 736 full-term children and suggested a
susceptible window of PM2.5 exposure at 16 to 25 weeks’ gesta-
tion associated with early childhood asthma development. Such
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an inconsistency in vulnerability across gestational weeks was
also observed in a number of investigations linking prenatal air
pollution exposure and birth outcomes.55,62-65 Future large-
scale (eg, multicity and multicountry) investigations covering
wider exposure ranges should focus on more sophisticated design
and methods (eg, precise exposure assessments considering
mother’s and child’s daily activities) to capture and better charac-
terize the vulnerable exposure windows, which may guide the
maternal preventive actions against air pollution and provide
novel insights into underlying mechanisms.48 Also, these efforts
may greatly contribute to more comprehensive understandings
by including additional large cohorts wherein childhood asthma
is more prevalent.

Sex difference in air pollution epidemiology has aroused great
research interest during past decades.66 In this study, we observed
more evident associations of prenatal PM exposure with child-
hood asthma in boys, whereas the risk intervals largely overlap-
ped between sexes. Findings of effect modification by sex
varied across studies,10,36,48 and more investigations suggested
stronger associations among boys37,48,49 together with 2
providing contrary results.9,36 Our retrospective analysis showed
that in utero particulate pollution was more strongly associated
with early development of asthma in childhood, with significantly
increased risk occurring only in the first 3 years of life. This
finding was generally consistent with a prospective birth cohort
study in Poland67 and a large Canadian nested case-control
study,68 and could be supported by a recent meta-analysis7

including 9 studies, which yielded a pool risk of 1.15 (1.00-
1.31) and 1.04 (1.00-1.09) for before and after age 3 years,
respectively.

Breast-feeding has been identified as an important protective
determinant for childhood respiratory health including asthma
onset.69-71 Assessments of combined effects of breast-feeding and
environmental exposures have also prompted a growing epidemi-
ological interest.72 For instance, evidence suggested that
breast-feeding may protect children from adverse effect of envi-
ronmental tobacco exposure on acute respiratory illness,73 lung
function,74 and respiratory diseases and symptoms.75,76 Our study
provided some suggestive clue of reduced asthma risk among
children being ever longer breast-fed when exposed to ambient
particulate pollution during the in utero period. Consistent find-
ings were also illustrated in several multicity cross-sectional
studies in China, indicating breast-feeding was associated with
a lower risk of respiratory conditions including wheeze and
asthma,77-79 and lung function impairment15 induced by particu-
late and gaseous air pollutants. Also, there is emerging AP-health
evidence72 reporting the potential modifying effects of breast-
feeding on outcomes such as hypertension, mental development,
and under-5 mortality. Underlying mechanisms for protective ef-
fects of breast-feeding on aforementioned adverse health effects
induced by air pollution need more investigations, but could be
possibly related to multifunctional breast milk nutrients and
bioactive factors that may boost the immune system and reduce
systemic inflammation and oxidative stress.72

Indoor and housing environment has been closely associated
with respiratory diseases or symptoms (eg, asthma and wheezing)
in children.3,8 Consistent evidence suggested increased risks of
childhood asthma triggered by prenatal exposures to environ-
mental tobacco smoke, housing renovation, and dampness,
whereas little was known regarding their complex interactions
with ambient particulate exposure.8,25 Our investigation in central
China found significant associations only in children without
aforementioned exposures. With respect to passive smoking
exposure, for instance, a prospective birth cohort in the
Netherlands80 found increased risks of wheezing associated
with traffic-related air pollutants (PM10 and NO2) only among
children who were exposed to both fetal and infant tobacco
smoke, showing a significant synergistic effect (P values for inter-
actions <.05). Nevertheless, a US panel study81 reported a con-
trary finding regarding the direction of interaction, suggesting
lower PM-associated risks of asthma in children exposed to
higher tobacco smoke. Despite opposite interactions, these
studies both implied the potential nonlinear dose-response rela-
tionship between asthma mediators and particulate exposures.81

Owing to the complex and mixed exposures to indoor pollutants
(eg, induced by housing renovation and passive smoking) and out-
door air pollution,82 findings on their interplays are difficult to
interpret and specific well-designed investigations are needed to
reveal the potential mechanisms.

Our study has 2 major strengths over previous investigations.
First, exposure assignments were based on high-resolution (13 1
km) space-time modeling estimates using a machine learning
technique, which could better represent personal exposures than
widely used spatial interpolation methods26,35 (eg, ordinary Krig-
ing and inverse distanceweightedmethods) throughwell incorpo-
rating spatiotemporal scales of satellite images, land use, and
meteorological factors. Second, we are the first to assess the ef-
fects of prenatal exposure to submicron particulate pollution
(ie, PM1) on early childhood asthma and wheezing, and per-
formed a comparative analysis of associations with larger parti-
cles (PM2.5 and PM10).

Several limitations should also be noted. First, outcomes of
asthma and wheezing in this study were self-reported rather than
physician-diagnosed or being ascertained by medical hospital
records. Recall bias might exist with regard to the first-ever
incidence of wheeze and asthma investigated through the Inter-
national Study of Asthma and Allergies in Childhood question-
naire. Second, our time-to-event analyses for PM-wheeze
associations may fail to fully exclude viral-induced transient
wheeze, because first-ever wheeze was assessed retrospectively
over previous years across all seasons. Third, we failed to include
maternal age and body mass index for further modeling
adjustments in the analysis due to data unavailability. Fourth,
this is a single-city study and its results should be interpreted with
caution when directly generalizing our results to other Chinese
megacities, because PM pollution levels and its chemical
components vary substantially by locations. In addition, findings
from this study could not directly be generalized to other low-
educated populations, because young mothers included in our
survey have an elevated educational attainment.
Conclusions
This retrospective study added novel evidence for increased

risk of childhood asthma onset associated with early-life expo-
sures to submicron particulate pollution as well as PM2.5 and
PM10. Comparative analyses highlighted stronger associations
of ambient PM1 than of larger particles with asthma development.
PM-asthma associations could be possibly modified by breast-
feeding, which indicated that longer breast-feeding may lower
asthma risk in children exposed to particulate air pollutants.
Our findings may help guide the prenatal preventive actions
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against air pollution and have implications for further research on
underlying mechanisms. Continued efforts of air cleaning action
are urgently needed in China to reduce health burden of asthma in
children associated with particulate air pollution.
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Key messages

d Early-life submicron particulate exposure, particularly
during pregnancy, was associated with an increased risk
of childhood asthma.

d Longer breast-feeding may lower asthma risk in children
exposed to particulate air pollutants.
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FIG E1. Pairwise Spearman correlation matrix between in utero and first-year exposures to ambient air pol-

lutants and greeness.
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FIG E2. HRs (with 95% CIs) of asthma among subgroups stratified by child sex, breast-feeding duration, and

age at diagnosis, associated with per 10-mg/m3 increase in first-year exposure to PM1, PM2.5, and PM10. *P <

.05.
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TABLE E1. Summary distributions of trimester-specific particulate pollution concentrations

Air pollution

concentration Mean 6 SD Min

Percentiles

MaxP25 P50 P75

Trimester 1 (mg/m3)

PM1 43.7 6 11.9 17.2 35.2 41.5 52.6 85.4

PM2.5 67.9 6 21.8 18.8 57.2 68.9 79.4 148.9

PM10 120.9 6 30.5 46.0 104.9 121.5 143.7 223.9

Trimester 2 (mg/m3)

PM1 42.4 6 9.7 19.0 35.8 41.5 48.9 70.3

PM2.5 65.0 6 15.9 23.2 57.4 65.8 75.5 110.4

PM10 117.0 6 22.5 54.2 104 119.6 130.9 223.9

Trimester 3 (mg/m3)

PM1 39.5 6 12.0 17.8 28.7 38.0 46.9 82.2

PM2.5 59.5 6 20.8 18.8 40.7 61.1 74.6 140.1

PM10 110.6 6 28.1 42.0 87.4 116.1 130.2 197.7
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TABLE E2. Estimated HRs (95% CIs) of asthma and wheezing associated with per 10-mg/m3 increase in trimester-specific PM

exposures (PM1, PM2.5, and PM10)

Exposures

Asthma Wheezing

HR (95% CI) P value HR (95% CI) P value

Trimester 1

PM1 1.283 (1.034-1.592) .024 1.132 (0.997-1.286) .056

PM2.5 1.104 (0.981-1.242) .100 1.025 (0.955-1.100) .495

PM10 1.039 (0.961-1.124) .338 0.986 (0.942-1.032) .556

Trimester 2

PM1 1.208 (0.971-1.501) .089 0.936 (0.823-1.065) .315

PM2.5 1.108 (0.972-1.263) .126 0.970 (0.897-1.050) .457

PM10 1.047 (0.959-1.143) .305 1.010 (0.956-1.067) .719

Trimester 3

PM1 1.225 (1.003-1.495) .046 0.961 (0.851-1.085) .520

PM2.5 1.099 (0.985-1.225) .090 0.994 (0.931-1.061) .849

PM10 1.068 (0.988-1.154) .096 0.969 (0.926-1.014) .173
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TABLE E3. Estimated HRs (95% CIs) and P value for nonlinear trend of asthma and wheezing associated with in utero and first-

year exposures to size-specific particulate pollutants

Particulate pollutants Outcome Exposure interval HR (95% CI) P for nonlinear trend*

In utero exposure

PM1 Asthma 10 mg/m3 1.618 (1.159-2.258) .618

PM2.5 Asthma 10 mg/m3 1.314 (1.070-1.614) .531

PM10 Asthma 10 mg/m3 1.236 (1.047-1.458) .922

PM1 Wheezing 10 mg/m3 1.020 (0.834-1.246) .496

PM2.5 Wheezing 10 mg/m3 0.992 (0.876-1.124) .784

PM10 Wheezing 10 mg/m3 0.962 (0.872-1.063) .959

First-year exposure

PM1 Asthma 10 mg/m3 1.543 (0.822-2.896) .383

PM2.5 Asthma 10 mg/m3 1.358 (0.876-2.104) .342

PM10 Asthma 10 mg/m3 1.409 (1.037-1.915) .302

PM1 Wheezing 10 mg/m3 1.214 (0.831-1.771) .455

PM2.5 Wheezing 10 mg/m3 1.148 (0.880-1.499) .143

PM10 Wheezing 10 mg/m3 1.119 (0.935-1.338) .087

*Estimated using likelihood ratio test.
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TABLE E4. Sensitive analysis of HRs (95% CIs) for childhood asthma and wheezing stratified by breast-feeding durations of 0-3

and 31 mo, associated with a 10-mg/m3 increase in prenatal exposure to PM1, PM2.5, and PM10

Exposures

Breast-feeding duration

(mo)

Asthma Wheezing

HR (95% CI) P for association P for interaction HR (95% CI) P for association P for interaction

PM1 .120 .117

0-3 2.353 (1.318-4.201) .004 1.250 (0.897-1.740) .187

31 1.337 (0.881-2.027) .172 0.894 (0.693-1.155) .391

PM2.5 .163 .119

0-3 1.250 (1.011-1.544) .039 1.106 (0.979-1.250) .104

31 1.041 (0.901-1.204) .585 0.982 (0.900-1.071) .681

PM10 .077 .002

0-3 1.175 (1.014-1.362) .032 1.133 (1.033-1.243) .008

31 0.995 (0.890-1.111) .923 0.950 (0.888-1.016) .136
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TABLE E5. Sensitive analysis of HRs (95% CIs) for childhood asthma and wheezing stratified by breast-feeding durations of 0-1,

1-6, and 61 mo, associated with a 10-mg/m3 increase in prenatal exposure to PM1, PM2.5, and PM10

Prenatal exposures

Breast-feeding duration

(mo)

Asthma Wheezing

HR (95% CI) P for association HR (95% CI) P for association

PM1

<1 4.017 (1.699-9.494) .002 1.327 (0.885-1.988) .171

1-6 1.953 (1.066-3.578) .030 1.291 (0.868-1.919) .207

>6 1.156 (0.721-1.853) .547 0.784 (0.587-1.046) .098

PM2.5

<1 1.446 (1.078-1.939) .014 1.039 (0.893-1.210) .617

1-6 1.171 (0.939-1.460) .161 1.228 (1.076-1.401) .002

>6 0.986 (0.835-1.165) .872 0.913 (0.826-1.010) .078

PM10

<1 1.279 (1.077-1.519) .005 1.159 (1.033-1.301) .012

1-6 1.062 (0.901-1.251) .475 0.999 (0.901-1.108) .991

>6 0.967 (0.852-1.096) .599 0.956 (0.885-1.033) .258
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TABLE E6. Sensitive analysis of HRs (95% CIs) for childhood asthma and wheezing stratified by breast-feeding durations of 0-1,

1-6, and 61 mo, associated with a 10-mg/m3 increase in postnatal exposure to PM1, PM2.5, and PM10

Postnatal exposures Breast-feeding duration

Asthma Wheezing

HR (95% CI) P for association HR (95% CI) P for association

PM1

<1 3.922 (1.125-13.678) .032 1.156 (0.529-2.527) .715

1-6 1.279 (0.374-4.376) .694 1.800 (0.873-3.711) .111

>6 1.259 (0.508-3.116) .619 0.907 (0.523-1.573) .727

PM2.5

<1 2.100 (0.874-5.049) .097 1.071 (0.620-1.848) .807

1-6 1.435 (0.613-3.357) .405 1.523 (0.932-2.490) .093

>6 1.295 (0.681-2.461) .430 0.967 (0.651-1.435) .866

PM10

<1 2.232 (1.175-4.238) .014 1.222 (0.852-1.755) .276

1-6 1.405 (0.779-2.531) .258 1.340 (0.952-1.886) .093

>6 1.282 (0.818-2.009) .278 0.937 (0.722-1.215) .623
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TABLE E7. Sensitive analysis of HRs (95% CIs) for childhood asthma associated with a 10-mg/m3 increase in in utero exposure to

PM1, PM2.5, and PM10, by additionally adjusting for gaseous pollutants, NDVI, and first-year PM exposures

Particulate pollutants Additional adjustment HR (95% CI) P for association P for LR test

In utero PM1 Main analysis 1.618 (1.159-2.258) .005 Reference

1 NO2 1.611 (1.065-2.437) .024 .973

1 O3 1.679 (1.164-2.424) .006 .632

1 NDVI 1.567 (1.118-2.196) .009 .295

1 First-year PM1 1.598 (1.106-2.309) .013 .878

In utero PM2.5 Main analysis 1.314 (1.070-1.614) .009 Reference

1 NO2 1.317 (0.997-1.739) .053 .984

1 O3 1.350 (1.071-1.702) .011 .620

1 NDVI 1.292 (1.051-1.588) .015 .225

1 First-year PM2.5 1.300 (1.035-1.634) .024 .835

In utero PM10 Main analysis 1.236 (1.047-1.458) .012 Reference

1 NO2 1.233 (0.981-1.549) .072 .978

1 O3 1.251 (1.043-1.500) .016 .753

1 NDVI 1.216 (1.030-1.436) .021 .249

1 First-year PM10 1.183 (0.990-1.413) .065 .174

LR, Likelihood ratio.
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TABLE E8. Sensitive analysis of HRs (95% CIs) for childhood asthma associated with a 10-mg/m3 increase in in utero and first-year

exposures to PM1, PM2.5, and PM10, by restricting analyses to Han-ethnicity and full-term (gestational age >_37 wk) children only

Particulate pollutants Analytic strategy HR (95% CI) P for association

In utero PM1 Main analysis 1.618 (1.159-2.258) .005

Han-ethnicity children

only

1.604 (1.145-2.246) .006

Full-term children only 1.636 (1.150-2.328) .006

In utero PM2.5 Main analysis 1.314 (1.070-1.614) .009

Han-ethnicity children

only

1.323 (1.074-1.629) .008

Full-term children only 1.346 (1.082-1.675) .008

In utero PM10 Main analysis 1.236 (1.047-1.458) .012

Han-ethnicity children

only

1.252 (1.058-1.482) .009

Full-term children only 1.282 (1.077-1.528) .005

First-year PM1 Main analysis 1.543 (0.822-2.896) .177

Han-ethnicity children

only

1.497 (0.787-2.849) .219

Full-term children only 1.490 (0.759-2.923) .247

First-year PM2.5 Main analysis 1.358 (0.876-2.104) .171

Han-ethnicity children

only

1.366 (0.875-2.131) .170

Full-term children only 1.323 (0.822-2.131) .249

First-year PM10 Main analysis 1.409 (1.037-1.915) .028

Han-ethnicity children

only

1.404 (1.028-1.918) .033

Full-term children only 1.440 (1.036-2.001) .030
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TABLE E9. Secondary analysis of risk estimates (with 95% CIs) for childhood asthma and wheezing, associated with per 10-mg/m3

increase in in utero and first-year exposures to PM1, PM2.5, and PM10

Exposures

Asthma Wheezing

RR* (95% CI) P value RR* (95% CI) P value

Entire pregnancy

PM1 1.618 (1.164-2.248) .004 1.159 (0.968-1.389) .109

PM2.5 1.315 (1.082-1.597) .006 1.087 (0.973-1.215) .139

PM10 1.236 (1.055-1.447) .009 1.027 (0.939-1.123) .557

First year (0-1 y)

PM1 1.553 (0.873-2.760) .134 1.281 (0.905-1.813) .163

PM2.5 1.362 (0.913-2.033) .130 1.226 (0.966-1.555) .094

PM10 1.407 (1.087-1.822) .009 1.170 (0.991-1.381) .064

*RR (relative risk) was estimated using modified Poisson regression approach. All models adjusted for a list of covariates including (1) child’s individual characteristics: the child’s

sex, ethnicity, vaginal delivery, birth year and season, gestational weeks, birth weight, and breast-feeding duration; (2) family or maternal characteristics: family history of atopy,

maternal education attainment, maternal smoking status, and area-based income; and (3) residential environment: household renovation during the early lifetime, indoor passive

smoke exposure, and residence-located area.
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TABLE E10. Secondary analysis of risk estimates (with 95% CIs) for childhood asthma and wheezing, associated with per 10-mg/m3

increase in trimester-specific exposures to PM1, PM2.5, and PM10

Exposures

Asthma Wheezing

RR* (95% CI) P value RR* (95% CI) P value

Trimester 1

PM1 1.282 (1.031-1.594) .026 1.131 (1.004-1.274) .043

PM2.5 1.105 (0.982-1.243) .098 1.034 (0.966-1.106) .338

PM10 1.041 (0.954-1.135) .368 0.985 (0.941-1.031) .504

Trimester 2

PM1 1.208 (0.991-1.472) .062 1.016 (0.903-1.144) .789

PM2.5 1.108 (0.991-1.239) .071 1.014 (0.945-1.089) .692

PM10 1.046 (0.969-1.129) .251 1.033 (0.982-1.086) .206

Trimester 3

PM1 1.230 (1.014-1.494) .036 1.027 (0.918-1.150) .638

PM2.5 1.100 (0.985-1.227) .090 1.035 (0.971-1.103) .296

PM10 1.069 (0.992-1.151) .080 0.998 (0.955-1.043) .929

*RR (relative risk) was estimated using modified Poisson regression approach. All models adjusted for a list of covariates including (1) child’s individual characteristics: the child’s

sex, ethnicity, vaginal delivery, birth year and season, gestational weeks, birth weight, and breast-feeding duration; (2) family or maternal characteristics: family history of atopy,

maternal education attainment, maternal smoking status, and area-based income; and (3) residential environment: household renovation during the early life time, indoor passive

smoke exposure, and residence-located area.
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