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A B S T R A C T

Fine particulate matter (PM2.5) pollution threatens urban sustainability. Few cohort studies have assessed hy
pertension risks linked to lagged and cumulative exposure to PM2.5 components. Using data from a cohort study 
of 36,271 individuals in South China (2015–2020), we examined the individual associations between time- 
varying PM2.5 and six components (NO3

− , SO4
2− , BC, CL− , NH4

+, and OM) with hypertension hospitalization 
through Cox proportional hazards regression. Mixed associations of simultaneous exposure to these components 
were analyzed at lag 0, lag 1, lag 2, lag 0–1, and lag 0–2 years using quantile-based g-computation models. 
Individual-effect analysis revealed strong associations, with each quantile increase in CL− , NH4

+, SO4
2− , and NO3

−

linked to 17 %–32 % higher hypertension risks across different time windows. Co-exposure to PM2.5 components 
at different lag times increased hospital admissions for overall hypertension, with hazard ratios (95 % confidence 
intervals) of 1.151 (1.136–1.166), 1.221 (1.205–1.238), 1.257 (1.241–1.273), 1.087 (1.073–1.101), and 1.197 
(1.182–1.212). Secondary water-soluble ions (NO3

− , SO4
2− , NH4

+, CL− ) were major contributors. Increased sus
ceptibility was observed among those under 45, men, individuals with lower education, unhealthy weight, or 
limited green space exposure. These findings highlight the lagged and cumulative impacts of simultaneous 
exposure to PM2.5 component on hypertension.

Abbreviations: HR, hazard ratio; CI, confidence interval; ICD-10, International classification of diseases–10th revision; PM2.5, particulate matter with an aero
dynamic diameter ≤ 2.5 µm; BMI, body mass index; NO2, nitrogen dioxide; NDVI, normalized difference vegetation index; PRE, precipitation; TEMP, temperature; 
CL− , chloride; NH4

+, ammonium; BC, black carbon; SO4
2− , sulfate; NO3

− , nitrate; OM, organic matter.
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1. Introduction

Hypertension is a common chronic disorder that is the primary cause 
of cardiovascular disease as well as premature mortality globally. By 
2019, the worldwide number of hypertensive individuals has surpassed 
1 billion (Nguyen & Chow, 2021). In the rapidly urbanizing regions, 
particularly in Asian countries, including China, the prevalence of hy
pertension has been rising alongside economic development (Kario 
et al., 2024). Mitigating the burden of hypertension is essential for 
attaining sustainable development and national health goals, as high
lighted by programs such as “Healthy China 2030″ (Hou et al., 2020; 
Peng et al., 2024). Urbanization, a significant catalyst for economic 
advancement, also markedly elevates air pollution, especially fine par
ticulate matter (PM2.5). Recent evidence highlights urbanization as a 
major cause to increased PM2.5 levels in China, emphasizing the neces
sity of comprehending its effects on hypertension (Huang et al., 2023; 
Liu et al., 2022). Such insights could inform targeted air pollution 
control strategies to alleviate disease burdens and promote sustainable 
urban development (Fu et al., 2024).

There is a growing body of evidence supporting a significant link 
between ambient PM2.5 and hypertension, emphasizing the urgency of 
sustainable air quality policies (Hahad, Rajagopalan, Lelieveld, 
Sørensen, Frenis et al., 2023a, 2023b; Magnussen et al., 2023; Zhao 
et al., 2022). For instance, a recent meta-analysis containing 28 studies 
identified a positive correlation between prolonged PM2.5 exposure and 
hypertension, although evident heterogeneity (Zhao et al., 2022). A 
study found that mice exposed to concentrated ambient PM2.5 displayed 
elevated blood pressure, with sympathetic nervous system activation as 
a potential mediator, possibly linked to hypothalamic inflammation 
(Ying et al., 2014). Similarly, those exposed to greater PM2.5 levels had 
higher blood pressure than people who used air purifiers, according to a 
double-blind, randomized controlled experiment carried out in China (Li 
et al., 2017). However, elevation in blood pressure has not been 
consistently demonstrated in humans and animal models following 
exposure to concentrated PM2.5, partially due to variations in PM2.5 
composition, study population, and study design (Rajagopalan et al., 
2024).

Importantly, PM2.5 is a complex mixture that contains a variety of 
chemical elements, including nitrate (NO3

− ), sulfate (SO4
2− ), black car

bon (BC), chloride (CL− ), ammonium (NH4
+), organic matter (OM), and 

others (Zhang & Yao, 2024). Most existing studies primarily examine 
PM2.5 as a whole, often overlooking the contributions of its individual 
chemical constituents. Since PM2.5 composition and toxicity fluctuate 
across region, time periods, and concentration levels, such an oversight 
may introduce confounding bias (Barzeghar et al., 2020; Gangwar et al., 
2020; Weichenthal et al., 2024; Zhao et al., 2022). Furthermore, based 
on a review of the existing literature, very few research has investigated 
the association between hypertension and the components of PM2.5 (Li 
et al., 2022a; Li et al., 2022b; Li et al., 2023; Liu et al., 2021; Lv et al., 
2023; Shen et al., 2022; Sun et al., 2024). Most available evidence stems 
from cross-sectional studies or research targeting specific population 
subgroups, such as pregnant women, middle-aged and older individuals, 
or children and adolescents. Considering that cohort studies yield more 
robust evidence than cross-sectional studies, there is an imperative for 
research utilizing a large-scale, general population cohort to examine 
the impact of PM2.5 component exposure on hypertension risk (Liu et al., 
2021; Zhao et al., 2022). Additionally, several investigations have 
demonstrated the lag and cumulative detrimental cardiovascular effects 
of PM (Bravo et al., 2017; Kazemiparkouhi et al., 2022; Zhang et al., 
2024). For instance, a recent cohort-based investigation examining the 
long-term effects of PM2.5 exposure on the initial hospitalization for 
major cardiac conditions has demonstrated the time-lagged and cumu
lative detrimental effects of PM2.5 (Wei et al., 2024). Nonetheless, prior 
research has not examined the lag and cumulative impacts of prolonged 
simultaneous co-exposure to multiple PM2.5 components over varied 
durations on hypertension, nor have they determined the individual 

contributions of each component. Such research could provide critical 
insights for shaping air pollution control strategies that not only improve 
public health but also contribute to achieving long-term sustainability 
goals by fostering cleaner, healthier urban environments.

To bridge the research gap, we designed a large cohort study to 
clarify the individual and combined relationships between PM2.5 com
ponents (NO3

− , SO4
2− , BC, CL− , NH4

+, and OM) and the risk of first hos
pital admission from hypertension, while also examine the effects of 
lagged and cumulative mixture exposure. To assess the individual im
pacts of every component, we employed time-dependent Cox propor
tional hazards models. Additionally, the combined effects of PM2.5 
components on hospitalization for hypertension were investigated using 
quantile-based g-computation models, which could also be used to 
evaluate the individual contributions of each component to the overall 
mixture effect.

2. Methods

2.1. Study design and participants

As part of the Chinese 12th (2012–2017) Five-Year Plan Major Pro
jects of Scientific Research, the Pearl River Cohort Study (PRCS), which 
conducted its baseline investigation from 2009 to 2015 in Guangzhou, 
Zhongshan, and Shenzhen, Guangdong province, provided the data for 
this research (Ruan et al., 2019). Our analysis focused on the sub-cohort 
of PRCS from Guangzhou, one of China’s biggest cities, due to the 
availability of hospitalization data in this area. Between January and 
December 2015, a total of 49,985 residents were enrolled, as primary 
exposure data on PM2.5 components became available starting in 2013, 
and the exposure of interest involves a three-year moving average, 
calculated over the current and previous two years. Participants who 
were under the age of 18 (n = 9159), had ambiguous residence addresses 
(n = 3837), or had hospitalization dates reported after their date of 
death (n = 718) were excluded from the analysis. A total of 36,271 adult 
residents were finally recruited in 2015, with follow-ups continuing 
until December 2020 (Fig. A.1). The comparison shows that the general 
characteristics of the included participants align well with those of the 
overall study population (Table A.1). Baseline information comprised of 
computer-based questionnaire data, encompassing various factors such 
as age, sex, ethnicity, health insurance categories, family history of 
cardiovascular diseases, marital status, education levels, exercise fre
quency, smoking status, and alcohol consumption. In addition, physical 
examination measurements were conducted, including parameters like 
height, weight, as well as body mass index (BMI). Face-to-face in
terviews were conducted by trained nurses, and physical examinations 
were completed following a standardized procedure. Before data 
collection, all participants signed a permission form and provided 
written informed consent. Ethical approval was granted by the Sun 
Yat-sen University Human Ethics Council (IRB No. L201703). Categories 
of each variable were described in depth in the Cohort in this study sec
tion of the Supplementary Methods.

Hospitalization data were gathered from the information systems of 
all 418 healthcare institutions throughout Guangzhou, encompassing 
the whole region. The causes of hospitalization were identified using the 
principal discharge diagnosis code (i.e., the first-listed diagnosis) for 
hypertension (I10-I16), with the primary outcome defined as the first 
hospital admission for hypertension. These diagnoses were determined 
through physician evaluations and categorized using the International 
Classification of Diseases, 10th edition (ICD-10) codes. Primary hyper
tension (also known as ‘essential hypertension’, I10) was specifically 
included due to its high prevalence as the most common type of hy
pertension (Carretero & Oparil, 2000; de Silva et al., 2020). The exact 
admission date was recorded for each hospitalization.
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2.2. Environmental exposure

Between 2013 and 2020, yearly average concentration data of PM2.5 
and its components, with a geographical resolution of 1 km, were 
derived from a publicly available dataset of ChinaHighAirPollutants 
(CHAP). This dataset encompasses extensive, reliable ground-level air 
pollutant data for China, with its reliability having been validated in 
prior research (Han et al., 2024; Li et al., 2025; Liu et al., 2024). Both 
PM2.5 mass data and component data were simulated using the 
four-dimensional spatiotemporal deep forest (4D-STDF) model, with 
both exposure datasets being derived from satellite-based remote 
sensing data. Calculations of PM components have been described in 
detail elsewhere and were briefly introduced as follows (Wei, Li, Chen 
et al., 2023). Daily ground-based measurements of PM2.5 inorganic 
compositions were obtained via the Chinese Center for Disease Control 
and Prevention network, which is rather homogeneous with dense 
clusters situated in key megacities across mainland China. PM2.5 sam
ples were obtained using quartz filter membranes, and then after being 
ultrasonically extracted with clean water, ion chromatography was used 
to determine their chemical composition (Chen et al., 2020; Chen et al., 
2019). To address the differences in the sources of ground-based mea
surements of PM2.5 compositions and PM2.5 mass used for model vali
dation, we employed the 4DSTDF model to assess daily concentrations 
of PM2.5 components at a resolution of 0.01◦. Specifically, the 4D-STDF 
model integrated satellite-derived PM2.5 mass data with additional 
auxiliary variables, including satellite remote sensing products, 
pollutant emission inventories, and meteorological reanalysis data. This 
model helps mitigate the impact of source variability and improves the 
separation and accuracy of the estimated components. The components 
estimated through the 4DSTDF model agreed well with ground mea
surements conducted in China and were widely utilized in epidemio
logical research examining the health effects of air pollution (Wang 
et al., 2023).The concentrations of PM2.5 and its constituents were 
allocated to each participant according to the geocoded coordinates of 
their residential address. Based on the proximity to available air pollu
tion data, the exposure value was assigned using a nearest-neighbor 
matching approach. Specifically, the concentrations were allocated for 
lag years 0, 1, and 2, which are referred to as lag 0, lag 1, and lag 2). 
Furthermore, moving averages for the current year and the years before, 
namely lag 0–1 and lag 0–2, were calculated to assess cumulative 
exposure levels (Wei et al., 2024).

2.3. Other covariates

To take into consideration the impact of environmental confounders, 
data on greenness exposure (specifically, the normalized difference 
vegetation index, or NDVI), nitrogen dioxide (NO2) concentrations, 
temperature (TEMP), and precipitation (PRE) were also gathered. The 
Land Processing Distributed Active Archive Center and the CHAP 
dataset provided the greenness and NO2 concentration data, respec
tively (Wei et al., 2023). Monthly data on TEMP and PRE were acquired 
from the National Science & Technology Infrastructure of China (http 
://loess.geodata.cn) (Peng et al., 2019). The annual average NDVI for 
each participant was determined within a 250-meter radius around each 
residence. Furthermore, NO2 concentrations, TEMP, as well as PRE, 
were matched with their geocoded residential address (Cai et al., 2023; 
Wen et al., 2023).

2.4. Statistical analyses

2.4.1. Individual-effect analyses
We started our analysis by determining the individual impact of the 

annual average exposure to PM2.5 and its constituent components (NO3
− , 

SO4
2− , BC, CL− , NH4

+, and OM) on hospital admissions using a time- 
dependent Cox proportional hazards model. In each model, the annual 
exposure levels of PM2.5 or each component, along with NDVI, NO2, 

TEMP, and PRE, were included as time-dependent terms. In model 1 (i. 
e., the base model), no adjustments were made for covariates. Model 2 
included demographic factors including age at baseline, sex, ethnicity, 
health insurance categories, family history of cardiovascular diseases, 
marital status, education levels, and BMI. Model 3 further incorporated 
lifestyle and environmental factors, including smoking status, alcohol 
consumption, exercise frequency, TEMP, PRE, NDVI, and NO2 concen
trations. The probable confounders were chosen using a directed acyclic 
graph (DAG, Fig. A.2) and previous studies (Cai et al., 2023; Huang 
et al., 2023; Wen et al., 2023). The resulting hazard ratio (HR) and its 
corresponding 95 % confidence interval (CI) for a quantile increase in 
the exposure concentration were presented. Additionally, we reintro
duced the exposure of interest as a smoothing factor in model 3 to 
investigate potential non-linear exposure-response correlations between 
the specific exposures at lag 0, lag 1, lag 0–1, or lag 0–2 years and the 
related outcome. The optimal degrees of freedom for the smoothing term 
were determined by minimizing the Bayesian Information Criterion 
(BIC) values (Malloy et al., 2009).

2.4.2. Mixture-effect analyses
We next used a quantile-based g-computation (QGC) model (desig

nated as model 4) to explore the association between exposure to the 
combination of these six PM components and the risk of hospital ad
missions related to hypertension, controlling for the same confounders 
as in model 3. We further incorporated PM2.5 concentrations into model 
4 to investigate the mixture effects after controlling for PM2.5 mass 
concentration. Briefly, the QGC approach initially transforms the six 
exposure components into quantized forms. It then fits an underlying 
model to assess the individual impacts of exposures on the outcome, 
generates predictions from this model at predefined exposure levels, and 
applies a marginal structural model to these predictions. Similar to the 
weighted quantile sum regression, the QGC approach estimates the 
mixture impact and the proportional contribution weight of each 
component. In this case, g-computation was used to estimate the pa
rameters of a marginal structural model. The combined effect from the 
QGC is defined as the change in the outcome when all mixture compo
nents increase by one quantile concurrently. Overall, QGC is a robust 
methodology that enables the assessment of the mixture effect while 
allowing the direction of impact to vary across the exposures (Carrico 
et al., 2015; Keil et al., 2020). The QGC model differs from previous 
models by calculating marginal impact estimates using a joint marginal 
structural model, instead of providing conditional effect estimates. 
Although conditional estimates are frequently used in research to assess 
the adverse effects of exposure within certain groups, such as the 
exposed population, marginal estimates provide a population average 
exposure effect and are more easily interpretable than conditional 
hazard ratios. Within a fundamental model of Cox proportional hazards, 
the QGC model in this study incorporates 4 quantiles. The quantile-based 
g-computation (QGC) model section in the Supplementary Methods pro
vides more information on the QGC technique.

2.4.3. Stratified analyses
The study also examined potential effect modifiers that could influ

ence the mixed impacts of prolonged exposure to PM components on 
hypertension hospital admissions through stratified analyses. This 
involved assessing heterogeneity among different subgroups and testing 
intergroup disparities using a 2-sample z-test, with a significance 
threshold of 0.05 applied between each pair of subgroups (Altman & 
Bland, 2003; Liang et al., 2020). The potential modifiers included age 
categories at baseline (<45 years, 45–64 years, or ≥65 years), sex (Men 
or Women), BMI categories based on the criteria of the Working Group 
on Obesity in China (18.5 kg/m2≤ BMI < 24.0 kg/m2, or otherwise), 
education (≤Elementary school, Middle/High school, or ≥College), and 
greenness exposure (Low or High). P-values with a significance 
threshold of 0.05 were utilized in all statistical analyses. For all data 
cleansing, statistical modeling, and data visualization, R (version 4.2.2) 
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was utilized.

2.4.4. Sensitivity analyses
To account for the mutual confounding effects among the compo

nents, we considered other components with correlation coefficients 
below 0.75 in the individual-effect analyses (model 3). To further assess 
the influence of gaseous pollutants, we acquired yearly concentrations 
of carbon monoxide, ozone, and sulfur dioxide from the CHAP datasets. 
Adjustments for carbon monoxide were made in this sensitivity analysis, 
while ozone and sulfur dioxide were excluded due to their high corre
lations (correlation coefficient > 0.75) with PM2.5. In the multi- 
pollutant models (model 4), carbon monoxide was also adjusted for. 
Next, to account for the impact of different NDVI buffers, we repeated 
model 4 using NDVI in 500-meter or 1000-meter buffers. Finally, to 
contend with missing covariates, we employed multiple imputations via 
chained equations (van Buuren & Groothuis-Oudshoorn, 2011) and 
conducted further studies using the complete datasets.

3. Results

3.1. Basic characteristics

The baseline characteristics of the participants are illustrated in 
Table 1 and Table A.2. Out of the initial 36,271 participants, 617 persons 
(1.7 %) were admitted to the hospital due to hypertension throughout an 
average follow-up duration of 5.8 years (standard deviation = 0.5), 
which amounts to a total of 209,835 person-years. The mean age of the 
participants was 50.9 years, with a standard deviation of 17.8 ages. 41 % 
of the participants were male. The Pearson correlation coefficients be
tween the annual mean PM2.5 and its components varied from 0.52 to 
0.99 (Table 2). The annual average concentrations (IQR) of PM2.5, NO3

− , 
SO4

2− , BC, CL− , NH4
+, and OM were 33.7 (5.8) μg/m3, 6.0 (1.1) μg/m3, 

7.9 (0.9) μg/m3, 3.3 (0.3) μg/m3, 1.0 (0.3) μg/m3, 3.8 (0.7) μg/m3 and 
11.7 (2.8) μg/m3, respectively, exhibiting similar decreasing trends over 
person-years (Fig. A.3).

3.2. Associations of PM2.5 and its constituents with hospitalization due to 
hypertension

HR estimates in the individual-effect analyses for model 1 and model 
2 are presented in Table A.3. With full covariate adjustment (Model 3), 
we observed statistically positive associations between hypertension- 
related hospital admissions and a quantile increase in CL− at lag 0, 
with corresponding HRs (and 95 % CIs) of 1.173 (1.046–1.314) for 
overall hypertension, and 1.208 (1.066–1.369) for primary hyperten
sion. We found no evidence of an association between each quantile 
increase in PM2.5, NH4

+, BC, SO4
2− , NO3

− , or OM at lag 0 with 
hypertension-related hospital admissions (Table 3). For lagged and cu
mulative effects, we found that individual exposure to NH4

+, NO3
− , and 

SO4
2− at lag 1 had harmful effects on overall hypertension hospital ad

missions, with HRs (and 95 % CIs) being 1.238 (1.063–1.442), 1.165 
(1.019–1.333), and 1.189 (1.015–1.393), respectively. Similar HRs were 
found for primary hypertension hospitalizations. At lag 2, long-term 
exposure to NO3

− and SO4
2− were significantly linked to hypertension- 

related hospital admissions (Table A.4). Long-term NH4
+ exposure at 

lag 0–1 and lag 0–2 was linked to an elevated risk of hypertension- 
related hospital admission (Table 3). After further adjustments for 
other components with correlation coefficients below 0.75 and for car
bon monoxide concentrations, the estimated HRs obtained from the 
sensitivity analyses at each lag time were comparable to those from the 
main analysis (Fig. A.4). The exposure-response relationship of 
hypertension-related hospital admissions associated with six PM com
ponents generally showed a non-linear shape (Fig. 1, and 
Fig. A.5− Fig. A.8). As shown in Tables A.5–A.9, the optimal degrees of 
freedom were selected based on the minimization of BIC values.

Co-exposure to PM2.5 components (NO3
− , SO4

2− , BC, CL− , NH4
+, and 

Table 1 
Characteristics of study participants.

Total Control 
group

Hospitalization from 
overall hypertension

(n =
36,271)

(n =
35,654)

(n = 617)

Demographics ​ ​ ​
Age (mean (SD), 

years)
50.9 
(17.8)

50.7 (17.7) 66.7 (11.6)

Sex, (male %) 14,727 
(40.6)

14,512 
(40.7)

215 (34.8)

Ethnicity, (minority 
%)

280 (0.8) 278 (0.8) 2 (0.3)

Education levels (%) ​ ​ ​
Illiterate or 

semiliterate
741 (2.0) 711 (2.0) 30 (4.9)

Primary school 5052 
(13.9)

4897 
(13.7)

155 (25.1)

Second school 7545 
(20.8)

7406 
(20.8)

139 (22.5)

High school 16,310 
(45.0)

16,052 
(45.0)

258 (41.8)

College or above 6623 
(18.3)

6588 
(18.5)

35 (5.7)

Marital status (%) ​ ​ ​
Never married 5455 

(15.0)
5425 
(15.2)

30 (4.9)

Married 29,264 
(80.7)

28,748 
(80.6)

516 (83.6)

Widowed 1239 (3.4) 1177 (3.3) 62 (10.0)
Divorced 313 (0.9) 304 (0.9) 9 (1.5)
Health insurance (%) ​ ​ ​
For urban workers 24,922 

(68.7)
24,476 
(68.6)

446 (72.3)

For urban residents 7308 
(20.1)

7174 
(20.1)

134 (21.7)

For rural residents 677 (1.9) 671 (1.9) 6 (1.0)
Others 3364 (9.3) 3333 (9.3) 31 (5.0)
Family history (%) ​ ​ ​
No 21,241 

(58.6)
20,921 
(58.7)

320 (51.9)

Yes 15,030 
(41.4)

14,733 
(41.3)

297 (48.1)

BMI (mean (SD), kg/ 
m2)

22.6 (2.9) 22.6 (2.9) 23.8 (3.2)

Lifestyle behaviors ​ ​ ​
Exercise frequency 

(%)
​ ​ ​

Very low 13,954 
(38.5)

13,728 
(38.5)

226 (36.6)

Occasional 3403 (9.4) 3353 (9.4) 50 (8.1)
Often 2574 (7.1) 2536 (7.1) 38 (6.2)
High 16,340 

(45.0)
16,037 
(45.0)

303 (49.1)

Smoking status (%) ​ ​ ​
Never 25,192 

(69.5)
24,732 
(69.4)

460 (74.6)

Former 529 (1.5) 513 (1.4) 16 (2.6)
Current 10,550 

(29.1)
10,409 
(29.2)

141 (22.9)

Alcohol consumption 
(%)

​ ​ ​

Never 25,551 
(70.4)

25,078 
(70.3)

473 (76.7)

Ever 10,720 
(29.6)

10,576 
(29.7)

144 (23.3)

Environmental 
covariates

​ ​ ​

NO2 (mean (SD), (μg/ 
m3)

44.5 (3.8) 44.5 (3.8) 44.6 (2.9)

TEMP (mean (SD), 
◦C)

22.6 (0.3) 22.6 (0.3) 22.5 (0.3)

PRE (mean (SD), 
mm)

150.0 
(16.5)

150.0 
(16.5)

151.0 (19.2)

NDVI (mean (SD)) 0.23 
(0.04)

0.23 (0.04) 0.23 (0.05)

Abbreviations: BMI, body mass index; NO2: nitrogen dioxide; NDVI, normalized 
difference vegetation index; PRE, precipitation; TEMP, temperature.

Y. Zhang et al.                                                                                                                                                                                                                                   Sustainable Cities and Society 124 (2025) 106293 

4 



OM) at various lag times (0, 1, 2, 0–1, and 0–2 years) was positively 
associated with hospital admissions for overall hypertension in the 
mixture-effect analyses employing QGC models. The HRs (with 95 % 
CIs) were 1.151 (1.136–1.166), 1.221 (1.205–1.238), 1.257 
(1.241–1.273), 1.087 (1.073–1.101), and 1.197 (1.182–1.212), respec
tively. Consistent findings were noted for hospital admissions due to 
primary hypertension (Table 4 and Table A.10). Furthermore, substan
tial associations remained significant after accounting for PM2.5 mass 
concentrations (Table A.11).

Furthermore, we discovered that combined exposure to PM2.5 con
stituents had distinct contributions (relative weights) to hypertension 
hospitalization. At lag 0, the component of SO4

2− (43.0 %–43.3 %) 
exhibited the strongest contribution to the observed adverse relation
ships between co-exposures and hospitalizations for both overall hy
pertension and primary hypertension, followed by CL− (36.7 %–41.6 %) 
and NH4

+(15.4 %–20.0 %). For lagged and cumulative co-exposure, NH4
+, 

SO4
2− , and NO3

− were the primary contributors to hypertension-related 
hospital admissions. Consistent findings were observed when addition
ally accounting for PM2.5 mass concentrations (Fig. 2). The estimated 
HRs at different lag times remained consistent after further adjustments 
for carbon monoxide concentrations, incorporating NDVI in 500-meter 
and 1000-meter buffers, or using the complete dataset 
(Tables A.12–A.16).

3.3. Subgroup analyses

In the stratified analyses by demographics (Fig. 3 and Table A.17), 
we observed that men, younger participants, and those with lower 
educational levels were more vulnerable to hypertension hospitalization 
associated with mixed exposure to PM components. Men had signifi
cantly greater risks compared to women, with Pinteraction < 0.001. The 
association between PM components and hypertension-related hospital 
admissions was greater among individuals under 45 years old than the 
older ones (all Pinteraction < 0.001). Additionally, participants with 
elementary education or lower exhibited a 5 %–22 % increased risk of 
hospitalization for hypertension compared to those with higher educa
tional attainment.

When stratified by controllable factors, participants with unhealthy 
weight (BMI < 18.5 kg/m2 or BMI ≥24.0 kg/m2) and those with limited 
exposure to greenness exhibited greater risks. Specifically, individuals 
with unhealthy weight experienced a higher risk of overall hypertension 
compared to their counterparts (HR: 1.22 vs. 1.11). Similarly, those with 
low greenness exposure had an 11 %–21 % higher risk of hypertension- 
related hospitalizations compared to those with greater greenness 
exposure.

4. Discussion

We conducted a large-scale prospective cohort study involving 
36,271 adults in the Pearl River Delta region of China. Our findings 
revealed that prolonged concurrent exposure to various PM components 
(NO3

− , SO4
2− , BC, CL− , NH4

+, and OM) at different lag periods was asso
ciated with an increased risk of hospitalization for hypertension, ranging 

Table 2 
Exposure distribution of pollutants across person-years and Pearson correlation coefficients between the exposure levels.

Exposure Mean ± SD Median 
(Min, Max)

Interquartile 
Range

Pearson correlation coefficient

PM2.5 CL− NH4
+ BC SO4

2− NO3
− OM

PM2.5 (μg/m3) 33.7 ± 5.2 33.7 (22.0, 42.3) 5.8 1.00 0.63 0.97 0.97 0.97 0.93 0.99
CL− (μg/m3) 1.0 ± 0.2 1.0 (0.5, 2.0) 0.3 0.63 1.00 0.74 0.59 0.59 0.67 0.52
NH4

+ (μg/m3) 3.8 ± 0.6 3.8 (2.4, 5.0) 0.7 0.97 0.74 1.00 0.94 0.93 0.96 0.92
BC (μg/m3) 3.3 ± 0.4 3.3 (2.1, 4.0) 0.3 0.97 0.59 0.94 1.00 0.95 0.90 0.95
SO4

2− (μg/m3) 7.9 ± 1.0 7.9 (5.8, 9.8)) 0.9 0.97 0.59 0.93 0.95 1.00 0.85 0.96
NO3

− (μg/m3) 6.0 ± 0.9 6.0 (3.7, 7.9) 1.1 0.93 0.67 0.96 0.90 0.85 1.00 0.87
OM (μg/m3) 11.7 ± 2.4 11.7 (5.8, 15.5) 2.8 0.98 0.52 0.92 0.95 0.96 0.87 1.00

Table 3 
Individual effects of hypertension-related hospitalizations associated with each 
quantile increase in PM2.5 and its components at lag 0, lag 0–1, and lag 0–2 
years.

Lagged 
exposure

Overall hypertension 
(n ¼ 617)

Primary hypertension 
(n ¼ 509)

HR (95 % CI) P 
value

HR (95 % CI) P 
value

Lag 0 ​ ​ ​ ​
PM2.5 0.998 

(0.862–1.155)
0.979 0.959 

(0.816–1.127)
0.609

CL− 1.173 
(1.046–1.314)

0.006 1.208 
(1.066–1.369)

0.003

BC 0.886 
(0.773–1.017)

0.086 0.877 
(0.753–1.023)

0.095

NH4
+ 1.108 

(0.966–1.272)
0.144 1.128 

(0.970–1.311)
0.118

NO3
− 1.011 

(0.887–1.151)
0.874 1.033 

(0.893–1.196)
0.658

SO4
2− 1.134 

(0.955–1.346)
0.152 1.105 

(0.918–1.331)
0.293

OM 0.890 
(0.786–1.006)

0.063 0.840 
(0.734–0.960)

0.011

Lag 0–1 ​ ​ ​ ​
PM2.5 0.989 

(0.960–1.019)
0.452 0.980 

(0.948–1.013)
0.226

CL− 1.098 
(0.983–1.227)

0.099 1.111 
(0.982–1.257)

0.096

BC 0.936 
(0.805–1.088)

0.387 0.906 
(0.769–1.068)

0.240

NH4
+ 1.278 

(1.091–1.498)
0.002 1.315 

(1.104–1.568)
0.002

NO3
− 1.083 

(0.952–1.232)
0.225 1.078 

(0.933–1.246)
0.310

SO4
2− 0.992 

(0.834–1.180)
0.931 1.004 

(0.832–1.211)
0.968

OM 0.905 
(0.775–1.058)

0.211 0.870 
(0.735–1.030)

0.107

Lag 0–2 ​ ​ ​ ​
PM2.5 0.996 

(0.975–1.017)
0.684 0.991 

(0.969–1.014)
0.422

CL− 1.112 
(0.989–1.250)

0.077 1.120 
(0.983–1.275)

0.088

BC 0.975 
(0.816–1.167)

0.785 0.978 
(0.803–1.191)

0.825

NH4
+ 1.186 

(1.001–1.405)
0.048 1.234 

(1.018–1.494)
0.032

NO3
− 1.164 

(1.001–1.353)
0.049 1.166 

(0.985–1.380)
0.075

SO4
2− 1.193 

(0.968–1.471)
0.097 1.146 

(0.914–1.438)
0.237

OM 0.944 
(0.788–1.131)

0.531 0.850 
(0.699–1.034)

0.104

Note: Models were adjusted for age, sex, ethnicity, health insurance categories, 
family history of cardiovascular diseases, marital status, education levels, BMI, 
exercise frequency, smoking status, alcohol consumption, NDVI, TEMP, PRE, 
and NO2 concentrations.
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from 8 % to 26 % within the general population. Among these mixed 
exposures, NH4

+, SO4
2− , NO3

− , and CL− played a predominant role, 
collectively contributing to over 90 % of the overall effect. Additionally, 
we observed that men, individuals under the age of 45, those with less 
education, those with unhealthy weight, and those with limited green
ness exposure exhibited stronger associations between mixed exposure 
and elevated risks of hypertension-related hospital admissions. This 
study enhances existing evidence in China by being the first to examine 
both the lag and cumulative effects of combined exposure to PM com
ponents on hypertension hospitalization.

In our analysis of individual-effect models, we observed a significant 
increase in hospitalization risks for both overall and primary hyper
tension linked with prolonged exposure to various PM components. 
Specifically, for each quantile increase in CL− , NH4

+, SO4
2− , and NO3

−

across different lag periods, the risk of hypertension hospitalization 
ranged from 17 % to 32 %. The associations observed in this study imply 
that extended exposure to PM components may have a substantial and 
enduring effect on the risk of hypertension-related hospitalization. 
Currently, the scarcity of extended PM composition monitoring data has 
hindered a comprehensive understanding of its relationship with hy
pertension (Zhao et al., 2022). Most existing knowledge is derived from 
cross-sectional studies, which may not fully capture the chronic impacts 
of PM exposure (Li et al., 2022a; Li et al., 2022b; Li et al., 2023; Liu et al., 
2021; Lv et al., 2023; Shen et al., 2022; Sun et al., 2024). In a nationwide 
cross-sectional survey of 113,159 adults in China, NO3

− , SO4
2− , BC, NH4

+, 
and OM were found to be positively correlated with hypertension 
prevalence (Lv et al., 2023). Similarly, another cross-sectional research 
in 7 Chinese provinces, involving 37,610 children and adolescents, 

Fig. 1. The exposure-response curve for the association of annual PM2.5 components with hospitalization from overall and primary hypertension. Models were 
adjusted for age, sex, ethnicity, health insurance categories, family history of cardiovascular diseases, marital status, education levels, BMI, exercise frequency, 
smoking status, alcohol consumption, NDVI, TEMP, PRE, and NO2 concentrations.
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reported positive effect estimates for PM2.5 components concerning 
hypertension prevalence (Li et al., 2022b). However, our results differ 
from these studies, particularly regarding the role of BC. While a strong 
relationship between BC and the risk of hypertension has been identified 
in previous studies, we did not find a similar effect. Interestingly, our 
results align more closely with a cross-sectional study performed in 
Australia, which also found no significant relationships between blood 
pressure and BC (Vander Hoorn et al., 2021). The observed discrep
ancies suggest that additional cohort studies are needed to clarify the 
intricate relationship between PM chemical components and health 
outcomes. These differences may stem from varying exposure assess
ment techniques, demographic variability, and regional differences in 

PM composition (Li, B. et al., 2021; Xue et al., 2021; Yang et al., 2020).
Additionally, although several previous investigations have exam

ined the link between individual exposure to PM constituents and hy
pertension, there remains a significant dearth of general-population 
cohort investigations examining the collective effects of prolonged 
exposure to PM components. A notable instance is a pregnant women 
cohort study conducted in California, United States, spanning from 2008 
to 2017, which investigated the relationships between five PM species 
and pregnancy-related hypertension problems (Sun et al., 2024). The 
study revealed that BC was the greatest contributor (71 %) of the 
mixture effects among all individual species. Another cohort research 
examined the cumulative impact of long-term exposure to PM compo
nents on blood pressure and hypertension, including 9031 middle-aged 
and elderly individuals in China. The results showed that NH4

+

contributed more to the total mixture effects (Li et al., 2022a). The 
scarcity of general-population cohort studies investigating the collective 
effects of prolonged exposure to PM components is particularly note
worthy, as individuals in real-world environments are concurrently 
exposed to multiple PM components, which can lead to complex syn
ergistic or antagonistic interactions (Qi et al., 2022; Wang et al., 2020). 
Such interactions can result in variable impacts on human cardiopul
monary function, complicating the assessment of their health effects (Jin 
et al., 2022). Our study addresses this gap by exploring both lagged and 
cumulative effects, offering new insights into how sustained exposure to 
PM components influences hypertension hospitalization. We observed 
stronger associations between mixed exposure to PM components and 
hypertension-related hospital admissions, particularly for NO3

− , SO4
2− , 

NH4
+, and CL− when considering lagged periods. This underscores the 

importance of developing targeted environmental policies that address 
specific PM components. While there are general air quality guidelines 
for the overall mass of PM10 and PM2.5, many nations, including China, 
do not have precise criteria for individual PM components. This study 
offers valuable evidence for prioritizing specific PM components in air 
quality monitoring and regulation, with implications for developing 

Table 4 
Mixture impacts of each quantile increase in co-exposure to PM components on 
hospital admissions for overall and primary hypertension using QGC models 
across different lag years.

Overall hypertension 
(n ¼ 617)

Primary hypertension 
(n ¼ 509)

Lagged 
exposure

HR (95 % CI) a P value HR (95 % CI) a P value

Lag 0 1.151 
(1.136–1.166)

<

0.001
1.104 
(1.089–1.120)

<

0.001
Lag 1 1.221 

(1.205–1.238)
<

0.001
1.189 
(1.172–1.205)

<

0.001
Lag 2 1.257 

(1.241–1.273)
<

0.001
1.164 
(1.148–1.179)

<

0.001
Lag 0–1 1.087 

(1.073–1.101)
<

0.001
1.076 
(1.061–1.090)

<

0.001
Lag 0–2 1.197 

(1.182–1.212)
<

0.001
1.078 
(1.064–1.092)

<

0.001

a Adjusted for age, sex, ethnicity, health insurance categories, family history 
of cardiovascular diseases, marital status, education levels, BMI, exercise fre
quency, smoking status, alcohol consumption, NDVI, TEMP, PRE, and NO2 
concentrations.

Fig. 2. The contributions assigned to each PM component from combined-effect analyses by using QGC models with a quantile number of 4. Main model: adjusting 
for age, sex, ethnicity, health insurance categories, family history of cardiovascular diseases, marital status, education levels, BMI, exercise frequency, smoking status, 
alcohol consumption, NDVI, TEMP, PRE, and NO2 concentrations.
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component-based standards that more effectively safeguard public 
health. Our results highlight the critical need to monitor those PM 
components most strongly linked to hypertension hospitalization, which 
can guide resource allocation and inform targeted emission control 
strategies. For instance, implementing stricter emission standards for 
traffic, industry, and biomass burning substantially mitigates the health 
burden associated with these components. Building on these findings, 
we recommend that policymakers integrate the health impacts of indi
vidual PM components into air quality regulations. This approach can 
more effectively mitigate the health risks associated with PM exposure. 
Specifically, monitoring and regulating key components such as NO3

− , 
SO4

2− , NH4
+, and CL− should be prioritized. Urban planners and public 

health officials could leverage our findings to allocate resources for 
targeted emission control measures, ensuring meaningful health bene
fits. Furthermore, advancing biological and toxicological research is 
crucial to fully understand the mechanisms underlying the interactions 
among combined exposures. These interdisciplinary efforts can provide 
a more comprehensive foundation for developing robust, 
evidence-based environmental policies.

While studies identifying susceptible subpopulations impacted by 
mixture effects are still limited, research focusing on PM mass or indi
vidual components has provided valuable insights. Our results support 
existing evidence that men and those with lower educational levels 
exhibit greater vulnerability to the adverse effects of prolonged exposure 
to multiple PM components (Li et al., 2022a; Li et al., 2021; Tibuakuu 
et al., 2018; Yang et al., 2020). Notably, we observed an unexpectedly 
high susceptibility in younger participants, contrasting with other 
studies on cardiovascular outcomes that reported greater effects of 
long-term PM2.5 exposure in the elderly (Liu et al., 2021; Lv et al., 2023; 
Xi et al., 2022). Interestingly, Wang et al. found in a cohort study 
spanning ten US states that younger residents (<34 years) had a higher 
relative risk of MI hospitalizations from long-term PM2.5 exposure 
compared to older individuals (Wang et al., 2023). Similarly, two 
meta-analyses showed that the harmful effects of PM2.5 were more 
pronounced in younger populations than in the elderly (Chen & Hoek, 
2020; Yang et al., 2018). Given that younger people can manage and 
control their hypertension more quickly and readily than older people, 
and that hospitalization rates for hypertension among young and 
middle-aged adults are rising globally (Harris et al., 2024; Meher et al., 

2023), public health prevention efforts should place greater emphasis on 
this age group, especially in regions with severe PM2.5 pollution. By 
enhancing air quality monitoring in these areas, it is possible to effec
tively reduce PM2.5-related hypertension risks in young people, thereby 
lowering the long-term health hazards from air pollution in the broader 
population. Additionally, given the observed heightened susceptibility 
among younger populations, public health policies should incorporate 
younger adults as a high-risk group for hypertension monitoring and 
targeted interventions, especially in regions experiencing severe PM2.5 
pollution. These proactive measures could mitigate long-term health 
effects, promote health equity, and support sustainable urban 
development.

Modifiable factors like BMI and greenness exposure were shown to 
have a substantial impact on the modulation of health risks related to 
exposure to PM components and hypertension. Our findings align with 
existing evidence indicating that individuals who are underweight or 
overweight face greater health risks from PM2.5 exposure compared to 
those with a normal weight (Li et al., 2020; Lin et al., 2017; Yang et al., 
2018). Furthermore, our study emphasizes the protective effects of 
green spaces. Green spaces not only purify the air by capturing partic
ulate matter and acting as noise barriers, but they also make substantial 
contributions to overall environmental cleanliness (Kim et al., 2023; 
Zhang et al., 2023). Additionally, regular exposure to green spaces 
provides numerous benefits, including enhancing environmental aes
thetics, improving psychological well-being, and alleviating negative 
emotions (Yu et al., 2023). Therefore, beyond safeguarding vulnerable 
populations, promoting urban greenery could be a key strategy in 
mitigating hypertension risks associated with mixed pollutant exposure. 
Integrating green infrastructure into urban health policies not only re
duces PM2.5 exposure and its associated hypertension risks but also 
aligns with sustainable development goals by fostering cleaner air, 
reducing urban heat island effects, and creating healthier living envi
ronments. Such interventions contribute to addressing the long-term 
public health burden posed by air pollution, while building sustain
able, resilient cities.

5. Strengths and limitations

This study utilized a substantially large cohort, providing ample 

Fig. 3. Mixed impacts of co-exposure to PM components on hospitalization for primary hypertension, stratified by age group, sex, BMI category, education level, and 
greenness exposure.
Note: Normal or healthy weight was defined as 18.5 kg/m2

≤ BMI < 24.0 kg/m2, and abnormal or unhealthy weight was defined as BMI < 18.5 kg/m2 or BMI ≥24.0 
kg/m2, according to the criteria of the Working Group on Obesity in China. The P for interaction between subgroup-specific effects was assessed using a 2-sample 
z-test.
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statistical power to thoroughly investigate the correlations between 
PM2.5 constituents and hypertension hospitalization across multiple 
subgroups. We utilized a QGC technique to evaluate the combined ef
fects of mixed exposures over different spans of time, rather than 
focusing solely on the individual impacts of each constituent. This 
approach accounted for substantial collinearity and potential additive or 
synergistic interactions. Furthermore, we performed a series of sensi
tivity analyses to guarantee the reliability and consistency of our find
ings. Despite these novel contributions and advantages, it is essential to 
acknowledge certain limitations. First, while thorough sensitivity ana
lyses were conducted to address potential confounding and correlations 
among gaseous pollutants, residual confounding and strong correlations 
between PM components may still limit the precision of estimating their 
individual effects, making it difficult to isolate their independent im
pacts. Second, residential addresses were not followed over the follow- 
up period; they were only gathered at baseline. Nevertheless, consid
ering that participants were permanent residents with a consistent 
residence history, the likelihood of relocation is minimal. Third, by 
using only hospitalization data, our study likely underestimates the full 
impact of particulate matter exposure on hypertension, since this data 
predominantly includes the most severe cases. Research using outpa
tient data has been found to report larger effect sizes than studies using 
hospitalization data (Danesh Yazdi et al., 2021; Feng et al., 2024; Lee 
et al., 2022; Zaheer et al., 2025). However, the use of first hospitaliza
tion for hypertension as our primary outcome aligns with standard 
practice in hospitalization-based studies, enhancing comparability with 
existing research (Mork et al., 2023; Wei et al., 2024). To gain a deeper 
insight into the health consequences associated with hypertension, 
future research might include information from self-reported diagnoses, 
outpatient visits, or other medical interactions.

6. Conclusions

In conclusion, our study found a significant correlation between 
chronic exposure to PM components and an increased risk of hospitali
zation for hypertension. Participants under the age of 45, those with 
lower educational attainment, unhealthy body weight, or limited 
exposure to green spaces exhibited heightened vulnerability to the 
adverse hypertension-related effects resulting from combined exposure 
to these PM2.5 components. Our research revealed that secondary water- 
soluble inorganic ions, including NO3

− , SO4
2− , NH4

+, and CL− , may be 
important sources of this danger. To promote sustainable urban devel
opment, upcoming urban strategic plans should prioritize monitoring 
and regulating these components, safeguarding vulnerable populations, 
and implementing green initiatives to alleviate the negative conse
quences linked to prolonged exposure to PM2.5 components.
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