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A B S T R A C T

Previous studies showed that ambient air pollution is a risk factor for stroke. But its effects on patients with
different comorbidity accumulation patterns and the causal relationship remain unclear. Hospitalization data
were collected from the Beijing Municipal Health Commission Information Center. Pollutant data, including
particulate matter (PM2.5, PM10, PM1, PM1-2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide
(CO), and ozone (O3) from 2014 to 2017, were obtained from the widely-used ChinaHighAirPollutants dataset.
An individual-level case-crossover design was employed to identify case days and control days. The exposure-
response association was estimated by fitting conditional logistic regression models. The newly proposed mar-
ginal ‘between-within’ models were used to estimate counterfactual hospitalization probability. In a total of 237
487 stroke patients, 211 741 diagnosed with ischemic stroke (IS) and 25 641 with hemorrhagic stroke (HS).
Except for SO2, the seven pollutants were associated with higher risk of overall stroke and IS. Particulate matter
showed larger estimated effects in patients with hypertension and diabetes but without hyperlipidemia. NO2 and
CO showed larger estimated effects in patients with hypertension but without diabetes. O3 showed larger esti-
mated effects in patients with hypertension, diabetes, and hyperlipidemia. PM1, PM10, NO2, and CO had sta-
tistically significant and persistent causal relationships with stroke risk during the lag periods. This study
highlighted the need for targeted interventions of air pollution. Prioritizing control measures for PM1, PM10,
NO2, and CO is particularly crucial in stroke prevention efforts.

1. Introduction

Ambient air pollution is considered as a significant risk factor for
human health. According to a systematic analysis for the Global Burden

of Disease Study, ambient air pollution was one of the top five risk
factors that contributed to attributable deaths in 2019 (Collaborators,
2020). Cardiovascular diseases including stroke accounted for the ma-
jority of deaths attributed to ambient air pollution (Collaborators,
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2020). China bears heavy disease burden of stroke, and the burden is
likely to increase because of the aged tendency of population and the
incremental risk factors (Wang et al., 2017; Wang et al., 2022; Wu et al.,
2019). Increasing evidence over the past few years has indicated that
there is a link between air pollution exposure and the risk of ischemic
stroke (IS) (Chen et al., 2021; Ho et al., 2022; Tian et al., 2018; Ver-
hoeven et al., 2021), but air pollution does not appear to be associated
with the risk of hemorrhagic stroke (HS). Besides, PM1 (particulate
matter with aerodynamic diameter ≤1 μm) was suggested to be more
harmful than PM2.5 (particulate matter with aerodynamic diameter
≤2.5 μm) (Wu et al., 2022a). Casual inference studies tried to explore
the health impact of ambient air pollution within a counterfactual
framework. The study utilized various research methods, including
difference-in-differences study (Kioumourtzoglou et al., 2016; Li et al.,
2021; Renzi et al., 2019; Wang et al., 2016), generalized propensity
score (Wei et al., 2020; Wu et al., 2020), instrumental variable approach
(Bae et al., 2020; Ju et al., 2022; Schwartz et al., 2017), negative control
approach (Schwartz et al., 2023; Yu et al., 2021), and inverse probability
weighting (Wei et al., 2021c). The majority of these studies focused on
mortality as the primary health outcome. Until now, there is no study
specifically examined the causal relationship of ambient air pollution
and the risk of stroke.

It has recently become more important to understand the association
between pre-existing cardiovascular conditions and environmental air
pollution. The principal motivation is to characterize how the influence
of ambient air pollution may vary among different comorbidities. A
previous study indicated that exposure to PM2.5 was associated with a
greater risk of hospital admission for stroke in patients with hyperten-
sion (Chang et al., 2022). While comorbidity generated greater suscep-
tibility to ambient air pollution in some studies (Chang et al., 2022; Li
et al., 2019), there were researches reported smaller risks of health
outcomes in comorbidity patients than in those without comorbidity
(Chen et al., 2020a; Seposo et al., 2020). White et al. (2020) found that
both air pollution and comorbidity score contributed to in-hospital
mortality, but they did not find evidence of interaction (White et al.,
2020).To some extent, these results from cross-sectional studies were
consistent with a prospective study. Luo et al. (2022) found that PM2.5
and nitrogen dioxide (NO2) increased the risks of transitions from
baseline to the first cardiometabolic disease (FCMD), from FCMD to
cardiometabolic multimorbidity (CMM), from baseline to death, but
PM2.5 did not increase the risk of transition from FCMD or CMM to
death, NO2 did not increase the risk of transition from CMM to death
(Luo et al., 2022). Thus, it appears that ambient air pollution increased
the risks of health outcomes but not in all the stages of disease devel-
opment. There might be a sensitive window or sensitive comorbidity
accumulation pattern. However, the limited study examined the acute
effect of air pollutants in patients with different numbers or accumula-
tion patterns of comorbidities. Ambient air pollution contributed to the
accumulation of comorbidities, resulting in additional burdens for
health, society and the economy(Arias de la Torre et al., 2023). The
research considering the role of ambient air pollution in patients with
different comorbidities could strengthen our understanding on the
health effect of ambient air pollution and broaden the way of stroke
management.

Our team has been focusing on the patients with comorbid conditions
to analyze the harmful effects of air pollutants on stroke hospital ad-
missions (Liu et al., 2021, 2022b; Zhao et al., 2022b, 2023) We found
that high level of air pollutants could be a risk factor for stroke among
those with hypertension and diabetes. However, the previous studies of
our team only considered a single comorbidity in each study population,
and none of the study explored the causal link. Thus, as a further
exploration based on our previous studies, and with an objective of
exploring the impact of air pollution in a perspective of disease accu-
mulation, we undertook this research among patients with various
comorbidities to investigate the correlation between short-term expo-
sure to 8 air pollutants and the risk of being hospitalized for stroke. In

this study, we evaluated personal exposure based on a high-quality air
pollution database. We also accounted for varying comorbidity numbers
and patterns of accumulation. In the vulnerable population, we exam-
ined the causal relationship within a counterfactual framework.

2. Data and methods

2.1. Hospitalization data

We collected medical record from the Beijing Municipal Health
Commission Information Center. The dataset contained the front sheet
of medical record of patients who were admitted for cerebrovascular
disease to the secondary and above-level hospitals in Beijing. Our study
period was from January 1st, 2014 to December 31st, 2017. Information
including gender, age, home address, admission date, principal diag-
nosis, and secondary diagnosis were collected. The principal diagnosis
was used to screen patients who were admitted for stroke. Based on the
International Classification of Diseases 10th Revision codes (ICD-10), we
identified overall stroke and the subtypes: overall stroke (I60-I64), IS
(I63) and HS (I60-I62). The secondary diagnosis was used to confirm the
patients’ comorbidities. In this study, we mainly focused on 3 comor-
bidities: hypertension (I10, Essential (primary) hypertension), diabetes
(E10-E14, Diabetes mellitus), hyperlipidemia (E78, Disorders of lipo-
protein metabolism and other lipidaemia). A total of 346 915 stroke
patients were admitted to secondary and tertiary hospitals in Beijing
from 2014 to 2017. Of these, 109 280 patients had missing or uniden-
tifiable home addresses, 137 patients were younger than 18 years old,
and 11 patients had missing gender information. A total of 237 487
stroke patients were included in the analysis. The subject flowchart is
shown in Fig. 1.

2.2. Exposure assessment

This study examined the acute effect of 8 air pollutants: PM2.5, par-
ticulate matter with aerodynamic diameter ≤10 μm (PM10), PM1, par-
ticulate matter with aerodynamic diameter between 10 μm and 2.5 μm
(PM1-2.5), sulfur dioxide (SO2), NO2, carbon monoxide (CO), and ozone
(O3), which were collected from the ChinaHighAirPollutants (CHAP)
dataset (Wei et al., 2019, 2021a, 2021b, 2022a, 2022b, 2023). The
CHAP is the series of long-term, high-resolution, high quality, and
full-coverage datasets of ground-level air pollutants in China. Combined

Fig. 1. Subject flowchart of this study.
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with the dig data of ground-based measurements, atmospheric rean-
alysis, satellite remote sensing products, and model simulations, the
concentrations of particulate matter at 1 km resolution and the con-
centrations of gaseous pollutants at 10 km resolution were estimated
using the proposed Space-Time Extra-Trees (STET) model. The CHAP
datasets yielded a higher data quality and outperformed most of the
previous models. The 10-fold cross-validation R2 was 0.92 for PM2.5,
0.90 for PM10, 0.83 for PM1, 0.84 for SO2, 0.84 for NO2, 0.80 for CO,
0.87 for O3. We collected the daily 24-h average concentration of PM2.5,
PM10, SO2, NO2, CO, and daily maximum 8-h average of O3. The con-
centration of PM1-2.5 was calculated by subtracting PM1 from PM2.5.

Following methods widely used in previous studies (Liu et al.,
2022a), we estimated the air pollutant exposure for hospitalized patients
based on their home addresses. Specifically, we obtained the home
address of each hospitalized patient from their medical records. Then,
we used the “baidumap” package in R-4.0.5 and the “pandas json”
package in Python to convert these home addresses into latitude and
longitude coordinates. Using these coordinates, we extracted the
pollutant concentrations from the CHAP database. The CHAP dataset
provides gridded data, and we employed the “Extract Multi Values to
Points” tool in ArcGIS to retrieve the pollutant concentrations corre-
sponding to each set of coordinates. According to the latitude and
longitude of each patient, we extracted the personal exposure of the 8
pollutants on both the case day and the control days, and at 5 lag days
(Lag 01- Lag 05).

2.3. Meteorological factors assessment

The data of relative humidity, wind speed, air pressure, and daily
temperature were collected from the China Meteorological Adminis-
tration. The ordinary kriging method was used to interpolate the
meteorological factors in Beijing, and personal value was extracted ac-
cording to patients’ geographical coordinates.

2.4. Individual-level case-crossover study design

We employed an individual-level case-crossover study design to
examine the acute effects of ambient air pollution on hospitalization risk
of stroke. The case-crossover study was an appealing design in envi-
ronmental epidemiology and was widely used to analyze the acute
health effects of environmental factors. In case-crossover study, each
subject serves as his or her own control, which allows the researcher to
compare relevant exposures on the day of the event and the days before
or after the event so as to account for individual-level characteristics and
temporally constant confounders. The case-crossover study can be based
on ecologic cluster data or individual data. When individual data are
available, it allows better control of unmeasured confounders and en-
ables subsequent study of characteristics pertaining to individuals. In
the current study, the time-stratified method, which was the most
frequently used design, was employed to select control days. The hos-
pitalization date of a patient was considered as the case day; the days
that were in the same year, the same month and the same day of the
week were considered as the control days. A total of 237 487 case days
and 807 233 control days were chosen.

2.5. Analysis of comorbidity patterns

We did a series of analyses to clarify the effects of ambient air
pollution on stroke among different comorbidity accumulation patterns
and to detect the vulnerable population. In the current study, we focused
on three comorbidities, hypertension, diabetes, and hyperlipidemia,
which were considered to be dominant risk factors for stroke. First, we
classified the patients into 4 groups based on the number of comorbid-
ities. The 4 groups are as follows: 1) Patients without hypertension,
diabetes and hyperlipidemia; 2) patients with one of the following
comorbidities: hypertension, diabetes, or dyslipidemia; 3) patients with

two of the following comorbidities: hypertension, diabetes, or dyslipi-
demia; 4) patients with all of the following comorbidities: hypertension,
diabetes, or dyslipidemia. The main models and lag-effect models were
fitted in each group. Second, we divided the patients according to co-
morbidity accumulation pattern. The accumulation of comorbidities in
this study started from hypertension, the major risk factor of stroke. The
effect estimates of hypertension patients were compared with non-
hypertension patients. Then the effects of patients with hypertension
and diabetes were compared with patients with hypertension but
without diabetes. Eventually, the effects of patients with hypertension,
diabetes, and hyperlipidemia were compared with patients with hy-
pertension, diabetes but without hyperlipidemia.

2.6. Statistical methods

2.6.1. Conditional logistic regression
We fitted conditional logistic regression models to estimate the odds

of being hospitalized for stroke. Each of the air pollutants was included
in the model as a continuous variable separately. We divided the con-
centration of each pollutant by the its interquartile range (IQR), so that
we could obtain the risk associated with an increase of one IQR in
pollutant concentration. Meteorological factors, including air pressure,
wind speed, relative humidity, and daily temperature were introduced
to the model by natural cubic spline functions of 3 degrees of freedom
(df). We chose df= 3 for meteorological factors to capture the non-linear
relationships between these factors and health outcomes while avoiding
overfitting, consistent with the approach used in most previous studies
(Chen et al., 2020b; Cui et al., 2022; Li et al., 2023). To account for the
‘holiday effect’, we also introduced a dummy variable indicating
whether the specific day was a public holiday. In order to depict the lag
structures, we calculated the moving average of 0–5 lag days of each
pollutant: Lag 0 denoted the exposure on the case day or the control day,
Lag 01 denoted the arithmetic mean exposure on the day and the pre-
vious 1 day, Lag 02 denoted the arithmetic mean exposure on the day
and previous 2 days, and so on in a similar fashion. The selection of Lag
01 to Lag 05 days was based on prior research and the physiological
understanding that the effects of air pollution on health outcomes can
have short-term lagged impacts (Toubasi and Al-Sayegh, 2023). For
each of the 8 pollutants, we fitted a lag-effect model in which exposure
of different lag days (from Lag 01 to Lag 05) was taken as the inde-
pendent variable.

Among the patients, subgroups were classified according to their
gender and age (age <65, age ≥65), and subgroup analysis was per-
formed to determine whether age and gender modify the association.
Sensitivity analyses were performed in the vulnerable population
detected by the analysis of comorbidity patterns to test the robustness of
the results: (1) We adjusted df of the meteorological factors from 2 to 5.
(2) We constructed multi-pollutant models in which the pollutants with
Spearman rank correlation coefficient less than 0.7 were adjusted.

2.6.2. Marginal ‘between-within’ (BW) model
Case-crossover study design has a good capacity to control for un-

measured confounders because it utilizes clusters (a patient’s own case
and control days). Typically, fixed-effects models find application in the
examination of clustered data, where they incorporate all consistent
confounding variables related to the clusters into specific intercepts
corresponding to each cluster (Sjölander, 2021). However, for binary
outcomes, conditional logistic regression models cannot be used to
predict risks or estimate marginal counterfactual means (Sjölander,
2021). Recently, Arvid Sjolander proposed the marginal BWmodel as an
improved method of the logistic BW model (Neuhaus and Kalbfleisch,
1998; Neuhaus and Mcculloch, 2006), which utilizes clustered design to
estimate marginal causal effects. The simulation study showed that by
fitting a marginal BW model and utilizing regression standardization,
counterfactual risks of a binary outcome could be estimated for a specific
exposure level and could be contrasted to present marginal causal

Z. Zhao et al. Atmospheric Pollution Research 15 (2024) 102308 

3 



effects.
In the current study, we employed the marginal BW model and

regression standardization to estimate the causal effects of ambient air
pollution in a counterfactual framework. Patients were considered as
independent clusters. Each cluster consisted of personal air pollutant
exposure of the same patient at case and control days, as well as the
corresponding outcome. The cluster-constant confounders were a group
of unmeasured factors, including individual-level characteristics and
temporal trends. The cluster-varying confounders were meteorological
factors and an indicator of a public holiday. In our marginal BW models,
the response variable was the binary hospitalization outcome and the
independent variables were the personal exposure to air pollutant; the
covariates were the other pollutants with Spearman rank correlation
coefficient less than 0.7, meteorological factors, and the holiday indi-
cator. The mean exposure level of the pollutants and meteorological
factors in each cluster were added to the model to control for unmea-
sured cluster-constant confounders. Meteorological factors were intro-
duced in the models with natural cubic spline functions of 3 degrees of
freedom (df). After the marginal BW model was fitted, we used regres-
sion standardization to estimate the counterfactual probability of hos-
pitalization risk if all patients were exposed to mild pollution (25th
percentile of concentration, P25), severe pollution (75th percentile of
concentration, P75), and extremely severe pollution (99th percentile of
concentration, P99). The regression standardization method was
described elsewhere (Sjölander, 2016, 2018). Briefly, the fitted model is
used to estimate hospitalization risk for specific concentrations of pol-
lutants for each observed level of measured confounders, and the esti-
mates are averaged. We estimated the causal effects of ambient air
pollution on hospitalization risk in the vulnerable population identified
by the analysis of comorbidity patterns.

All calculations, statistical analyses, and statistical graph were per-
formed using R 4.0.5. ‘survival’ package was utilized to fit conditional
logistic models. ‘stdReg’ package was utilized to perform the regression
standardization based on the fitted marginal BW models. We reported
the estimated effects of the conditional logistic models by excess risk
(ER) associated with every IQR increase of each pollutant (ER =
(
eIQR×β − 1

)
× 100%) (Wang et al., 2019). In this formula, “e" represents

the base of the natural logarithm, β represents the regression coefficient
for each pollutant, and IQR denotes the interquartile range of the con-
centration for each pollutant. The significance level is 0.05.

3. Results

3.1. Statistical description and Spearman’s correlation

Among the identified 237 487 stroke admission cases from 2014 to
2017 in Beijing, 89.16% were IS and 10.80% were HS. The mean age
was 68.23. Patients≥65 accounted for 60.31%, and males accounted for
62.07%. 76.26% of patients had a history of hypertension, 36.75% had a
history of diabetes, and 62.44% had a history of hyperlipidemia. 21.02%
of patients had all of the three comorbidities (Table 1). Table 2 displays
the dispersion of ambient air pollution for both the days of cases and of
controls. Fig. 2 illustrates the outcomes derived from conducting
Spearman rank correlation analysis between the pollutants and the
meteorological factors.

3.2. Association in the total population

The estimated effects at the exposure day are shown in Table 3. There
were significant positive associations between PM2.5, PM10, PM1, PM1-

2.5, NO2, CO, and O3 and the risk of being hospitalized for overall stroke
and IS. In terms of particulate matters (PM), PM2.5 exhibited the highest
effect estimate, with an ER (%) of 1.184% (95% CI: 0.487%–1.885%) for
overall stroke and 1.353% (95% CI: 0.612%–2.099%) for IS. In terms of
gaseous pollutants, O3 exhibited the highest effect estimate, with an ER

(%) of 1.742% (95% CI: 0.258%–3.248%) for overall stroke and 1.944%
(95% CI: 0.377%–3.536%) for IS. The estimated effects of SO2 were not
found to be significant. Fig. 3 illustrates the lag effect patterns. The
positive association of PM10, PM1, CO, and O3 was observed throughout
the entire lag period from Lag 0 to Lag 05. However, the lag effects of
PM1-2.5 appeared relatively late, specifically at Lag 04. As shown in the
supplementary materials, Table S1, Table S2, and Table S3 present the
results of subgroup analysis, which revealed more significant effect es-
timates among patients aged ≥65 and males.

3.3. Effects in different comorbidity accumulation patterns

Fig. 4, Fig. S1, and Fig. S2 (Supplementary materials) presents the
comparison of the estimated effects when focused on single comorbidity.
For overall stroke and IS, the associations were estimated to be stronger
among patients with hypertension or diabetes compared to those
without these comorbidities, while the associations were similar be-
tween patients with hyperlipidemia and those without. For HS, we
noticed significant positive associations between NO2 and CO with the

Table 1
Characteristics of the study population in terms of demographics.

Characteristics n

Overall stroke (%)
Ischemic stroke 211 741 (89.16)
Hemorrhagic stroke 25 641 (10.80)
Unclassified 105 (0.04)

Age (mean ± SD) 68.23 ± 12.86
<65 (%) 94 249 (39.69)

≥65 (%) 143 238 (60.31)
Gender (%)
Male 147 404 (62.07)
Female 90 083 (37.93)

History of comorbidities (%)
Hypertension 181 117 (76.26)
Diabetes 87 288 (36.75)
Hyperlipidemia 148 277 (62.44)

Number of comorbidities (%)
0 19 695 (8.29)
1 68 823 (28.98)
2 99 048 (41.71)
3 49 921 (21.02)

Accumulation pattern of comorbidities (%)
Hypertension, and diabetes 71 563 (30.13)
Hypertension, but no diabetes 109 554 (46.13)
Hypertension, diabetes, and hyperlipidemia 49 921 (21.02)
Hypertension, diabetes, but no hyperlipidemia 21 642 (9.11)

Table 2
Exposure levels at case days and control days.

Ambient air pollution Mean SD Percentile

25th 50th 75th 99th

Case days (n = 237 487)
PM2.5 (μg/m3) 72.03 58.68 31.70 57.10 92.10 295.50
PM10 (μg/m3) 113.93 73.44 64.10 98.10 141.50 383.40
PM1 (μg/m3) 41.45 36.10 16.84 31.07 52.33 175.91
PM1-2.5 (μg/m3) 30.58 25.89 13.85 24.51 38.69 137.33
SO2 (μg/m3) 15.68 16.99 5.06 9.65 19.37 83.26
NO2 (μg/m3) 49.47 24.34 32.41 43.84 60.66 127.33
CO (mg/m3) 1.22 0.94 0.68 0.95 1.39 5.02
O3 (μg/m3) 95.91 59.24 51.03 85.02 133.84 247.03
Control days (n = 807 233)
PM2.5 (μg/m3) 71.86 57.76 32.00 57.10 92.30 291.50
PM10 (μg/m3) 113.77 71.85 64.70 98.30 141.70 377.00
PM1 (μg/m3) 41.38 35.57 17.00 31.24 52.45 174.14
PM1-2.5 (μg/m3) 30.49 25.42 13.98 24.48 38.71 136.10
SO2 (μg/m3) 15.64 16.91 5.03 9.63 19.46 83.22
NO2 (μg/m3) 49.23 23.96 32.44 43.77 60.35 125.97
CO (mg/m3) 1.21 0.92 0.68 0.95 1.38 4.92
O3 (μg/m3) 96.20 58.95 51.18 86.05 134.64 245.77
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risk of hospital admission among patients with hyperlipidemia, a sig-
nificant positive association of NO2 among patients without diabetes,
and a significant negative association of O3 and SO2.

Fig. 3–5 present the associations between ambient air pollution and
the risk of being hospitalized for overall stroke, IS, and HS in patients
with different numbers of the comorbidities. We noticed significant
positive associations between exposure to PM2.5, PM10, PM1, PM1-2.5,
NO2, and CO, mainly in patients with 2 comorbidities. For O3, the as-
sociation was stronger and more significant in patients with 3

comorbidities. Moreover, as the lag period extended, the association for
PM2.5, PM10, and PM1-2.5 in patients with 3 comorbidities also became
significant, observed at Lag 05. Additionally, we observed a negative
association of SO2 at some lag days. The effect estimates of HS were
predominantly insignificant and had relatively larger confidence
intervals.

Fig. 6, Fig. S5, and Fig. S6 (Supplementary materials) present the
effect estimates for overall stroke, IS, and HS in patients with different
accumulation patterns of the comorbidities. In general, when exposed to
PM, the patients with hypertension, and diabetes, but without hyper-
lipidemia had larger and more significant estimated ER (%) for overall
stroke and IS. For the patients with all three comorbidities, the associ-
ations between PM2.5, PM10, and PM1-2.5 with the risks of overall stroke
and IS were not statistically significant until Lag 05. The negative as-
sociation of SO2 with IS observed in the whole study population dis-
appeared. When exposed to NO2 and CO, patients with hypertension but
without diabetes had larger and more significant estimated ER (%).
When exposed to O3, patients with hypertension, diabetes, and hyper-
lipidemia had larger and more significant estimated ER (%). Hospital
admissions for HS were mainly unrelated to ambient air pollution
exposure.

3.4. Sensitivity analysis

When we adjusted the df of the meteorologic factors from 2 to 5, the
estimated ER (%) remained almost the same (Supplementary materials,
Fig. S7). The estimated ER (%) from the single-pollutant model and
multi-pollutant model of each pollutant were roughly similar. The pos-
itive association between NO2 and hospitalization for overall stroke and
IS became significant in the multi-pollutant models at some lag days.
The association of PM2.5, PM10, and PM1-2.5 and hospitalization for IS
became insignificant at some lag days (Supplementary materials,
Fig. S8).

Fig. 2. Spearman rank correlation coefficients. Note: All correlations were statistically significant.

Table 3
Estimated excess risk (%) of hospital admission for stroke at the exposure day
(per interquartile range increase).

Pollutant IQR Excess risk (%)

Overall stroke Ischemic stroke Hemorrhagic
stroke

PM2.5 60.30
μg/m3

1.184 (0.487,
1.885)a

1.353 (0.612,
2.099)a

− 0.011 (− 2.049,
2.069)

PM10 77.10
μg/m3

0.965 (0.310,
1.625)a

1.082 (0.386,
1.783)a

0.171 (− 1.758,
2.138)

PM1 35.45
μg/m3

1.115 (0.416,
1.819)a

1.200 (0.458,
1.948)a

0.546 (− 1.525,
2.661)

PM1-2.5 24.76
μg/m3

0.873 (0.303,
1.446)a

1.067 (0.462,
1.677)a

0.594 (− 1.003,
2.218)

SO2 14.40
μg/m3

− 0.436
(− 1.153, 0.285)

− 0.244
(− 1.007, 0.524)

− 1.650 (− 3.729,
0.473)

NO2 27.97
μg/m3

1.422 (0.491,
2.362)a

1.586 (0.597,
2.584)a

0.377 (− 2.372,
3.204)

CO 0.70 mg/
m3

1.228 (0.692,
1.768)a

1.318 (0.748,
1.891)a

0.594 (− 1.003,
2.218)

O3 83.30
μg/m3

1.742 (0.258,
3.248)a

1.944 (0.377,
3.536)a

− 0.141 (− 4.683,
4.617)

Note.
a P < 0.05.
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3.5. Causal relationship

Based on the results obtained from the conditional logistic models,
we have identified the following pollutant-specific vulnerable popula-
tion: patients with hypertension and diabetes but without hyperlipid-
emia were found to be vulnerable to PM, patients with hypertension but
without diabetes were found to be vulnerable to NO2 and CO, and pa-
tients with comorbidities of hypertension, diabetes, and hyperlipidemia
were found to be vulnerable to O3. The estimated counterfactual risk and
odd risk (OR) of the vulnerable population were presented in Table 4
and Table S4 (Supplementary materials). For the estimated causal ef-
fects of PM2.5, PM10, PM1, PM1-2.5, NO2, and CO on overall stroke, we
observed statistically significant OR of exposure to severe pollution (P75)
and extremely severe pollution (P99) compared with mild pollution
(P25). For the causal effect of O3 on overall stroke, we only observed
statistically significant OR of exposure to extremely severe pollution
(P99) compared with mild pollution (P25) at lag 05. For the causal effects
of ambient air pollution on IS, we observed statistically significant OR of
exposure to severe pollution (P75) and extremely severe pollution (P99)
of PM10, PM1, NO2, CO, and statistically significant OR of exposure to
severe pollution (P75) of O3 at lag 05. Statistical significance was not
observed in the estimated causal effects of PM2.5 and PM1-2.5.

4. Discussion

In this particular investigation utilizing the case-crossover approach,
conducted at an individual level with a substantial sample size, we
sought to investigate the short-term effects of eight ambient air pollut-
ants on the risk of hospital admission for stroke in patients with various

comorbidity patterns. With the exception of SO2, we observed a positive
association between the increase of the other seven air pollutants and
the risk of overall stroke and IS. The effects of ambient air pollutants
varied among patients with different comorbidity patterns. We identi-
fied vulnerable comorbidity accumulation patterns for each of the seven
pollutants. The causal effects estimated within a causal framework were
more conservative compared to those estimated using traditional
regression models. The causal effects were predominantly observed for
PM10, PM1, NO2, and CO.

In the past few years, mounting evidence indicated that short-term
exposure to ambient air pollution could increase the risk of cerebro-
vascular diseases, including stroke (de Bont et al., 2022; Hahad et al.,
2020; Verhoeven et al., 2021). Wu et al. (2022) analyzed the association
between county-level PM2.5, PM10, and PM1 and the incidence of stroke
in Shandong Province. They observed significantly positive associations
between PM with overall stroke and IS, but not with HS (Wu et al.,
2022b). They reported that the attributable fractions of total stroke were
6.9% (95%CI: 5.1%, 8.5%), 5.6% (95%CI: 4.2%, 6.8%) and 5.6% (95%
CI: 3.9%, 7.1%) for PM1, PM2.5, and PM10, respectively (Wu et al.,
2022b). Another study demonstrated that the relative risks on IS per 10
μg/m3 increase in PM1, PM2.5, and PM10 were 1.014 (95%CI: 1.005,
1.0023), 1.007 (95%CI: 1.000, 1.014) and 1.005 (95%CI: 1.001, 1.009),
respectively (Chen et al., 2020b). In addition, the gaseous pollutants
were also found to be risk factors of stroke (Cui et al., 2022; Czernych
et al., 2023). Our results were roughly in line with these studies. But we
also found that short-term exposure to SO2 was negatively associated
with stroke admission risk at some lag days. This finding is consistent
with previous research by Cui M et al., who reported negative associa-
tions between NO2 at a 3-day lag and SO2 at a 7-day lag with the risk of

Fig. 3. Lag effects of air pollutants on the risk of hospitalization for stroke. Note: Excess risks of statistical significance were indicated in red.
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IS admission (Cui et al., 2022). We hypothesize that the negative asso-
ciation observed for SO2 might be attributed to a potential “harvesting”
effect caused by other pollutants (Smith, 2003). Specifically, increased
concentrations of other pollutants could lead to a higher incidence of
stroke among susceptible individuals, resulting in their hospitalization.
Consequently, this might lead to a temporary reduction in stroke inci-
dence observed later. Given these complexities, we could not conclude
that SO2 has a protective effect on stroke risk based on our findings
alone. Further research is needed to better understand the impact of SO2
on the risk of cerebrovascular diseases.

The main focus of our study was to investigate whether the effects of
pollutants vary among different comorbidity patients, among patients
with different numbers of comorbidities, and with different comorbidity
accumulation patterns, as well as to identify the vulnerable population.
The comorbidities of interest in the current study were hypertension,
diabetes, and hyperlipidemia. It has been reported that ambient air
pollution might increase the burden of multimorbidity (Arias de la Torre
et al., 2023; Ronaldson et al., 2022; Su et al., 2023). Hu et al. (2022)
explored the link between PM2.5 and the accumulation of

multimorbidity in a longitudinal study design. Their findings suggested
that long-term exposure to PM2.5 was associated with a higher risk as
well as faster accumulation of cardio-metabolic and respiratory multi-
morbidity (Hu et al., 2022). Yuan et al. (2023) demonstrated a signifi-
cant synergistic effect between atherosclerotic cardiovascular disease
risk and long-term PM2.5 exposure(Yuan et al., 2023). Previous studies
on the relation of ambient air pollution and stroke risk have primarily
focused on examining the differences in effect estimates among in-
dividuals with a single comorbidity (Chang et al., 2022; Chen et al.,
2020a; Ho et al., 2018; Tang et al., 2021). In consistent with the previous
studies, we found that patients with pre-existing hypertension and dia-
betes had a higher risk when exposed to ambient air pollution. For the
first time, we took the number of comorbidities and accumulation pat-
terns into consideration. The aim was to probe the harmful effects of
ambient air pollution in a perspective of disease progress. Except for O3,
the larger and more significant estimated effects were not observed
among patients with all three comorbidities. For PM, a larger effect size
was observed among patients with hypertension and diabetes but
without hyperlipidemia. For NO2 and CO, a larger effect size was

Fig. 4. Effect estimates of the pollutants on the risk of being hospitalized for overall stroke in patients with different comorbidities. Note: Statistically significant
excess risks were indicated in red. a: the association in patients with hypertension and without hypertension. b: the association in patients with diabetes and without
diabetes. c: the association in patients with hyperlipidemia and without hyperlipidemia.
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Fig. 5. Effect estimates of the pollutants on the risk of being hospitalized for overall stroke in patients with different numbers of comorbidities. Note: Statistically
significant excess risks were indicated in red.

Fig. 6. Effect estimates of the pollutants on the risk of being hospitalized for overall stroke in patients with different accumulation patterns of comorbidities. Note:
Statistically significant excess risks were indicated in red. a: The association in patients with hypertension but without diabetes and in patients with hypertension and
diabetes. b: The association in patients with hypertension, diabetes but without hyperlipidemia and in patients with hypertension, diabetes, and hyperlipidemia.
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observed among patients with hypertension but without diabetes. This
could be attributed to medication treatment or improved lifestyle habits
the patients might have during their exposure to ambient air pollution,
which has also been discussed in some previous studies (Lavigne et al.,
2016; Seposo et al., 2020). With an increasing number of comorbidities,
patients had higher usage of vascular protective medications and

Table 4
Counterfactual probability of hospitalization risk and odd risk for overall stroke
among the vulnerable population.

Pollutant Counterfactual risk Odd risk (OR)

P25 P75 P99 OR75/25 OR99/25

PM2.5

Lag 0 0.222
(0.217,
0.227)

0.230
(0.226,
0.233)

0.255
(0.229,
0.281)

1.043
(1.004,
1.082)a

1.200
(1.007,
1.393)a

Lag 01 0.223
(0.217,
0.229)

0.229
(0.226,
0.233)

0.250
(0.219,
0.281)

1.035
(0.989,
1.082)

1.161
(0.935,
1.386)

Lag 02 0.226
(0.219,
0.233)

0.228
(0.224,
0.232)

0.234
(0.200,
0.268)

1.011
(0.958,
1.063)

1.048
(0.812,
1.283)

Lag 03 0.225
(0.217,
0.232)

0.229
(0.224,
0.233)

0.242
(0.204,
0.281)

1.023
(0.964,
1.082)

1.104
(0.828,
1.380)

Lag 04 0.221
(0.213,
0.229)

0.230
(0.226,
0.235)

0.262
(0.218,
0.306)

1.054
(0.988,
1.119)

1.254
(0.917,
1.591)

Lag 05 0.220
(0.212,
0.228)

0.231
(0.226,
0.235)

0.267
(0.219,
0.315)

1.061
(0.990,
1.131)

1.290
(0.918,
1.663)

PM10

Lag 0 0.223
(0.218,
0.227)

0.230
(0.226,
0.233)

0.253
(0.232,
0.274)

1.042
(1.008,
1.075)a

1.181
(1.027,
1.334)a

Lag 01 0.223
(0.218,
0.228)

0.230
(0.226,
0.233)

0.252
(0.227,
0.277)

1.040
(1.000,
1.080)

1.173
(0.990,
1.357)

Lag 02 0.224
(0.219,
0.230)

0.229
(0.225,
0.233)

0.243
(0.215,
0.271)

1.026
(0.981,
1.072)

1.112
(0.911,
1.313)

Lag 03 0.223
(0.217,
0.229)

0.230
(0.226,
0.234)

0.252
(0.220,
0.284)

1.041
(0.989,
1.092)

1.176
(0.939,
1.414)

Lag 04 0.219
(0.213,
0.226)

0.232
(0.227,
0.236)

0.273
(0.237,
0.308)

1.073
(1.018,
1.129)a

1.334
(1.052,
1.617)a

Lag 05 0.218
(0.212,
0.225)

0.232
(0.228,
0.237)

0.279
(0.241,
0.317)

1.083
(1.024,
1.143)a

1.386
(1.076,
1.696)a

PM1

Lag 0 0.221
(0.217,
0.225)

0.230
(0.227,
0.233)

0.262
(0.240,
0.284)

1.052
(1.021,
1.083)a

1.252
(1.086,
1.418)a

Lag 01 0.221
(0.216,
0.226)

0.230
(0.227,
0.233)

0.262
(0.236,
0.288)

1.052
(1.015,
1.089)a

1.252
(1.054,
1.449)a

Lag 02 0.223
(0.217,
0.228)

0.229
(0.226,
0.233)

0.253
(0.225,
0.281)

1.039
(0.997,
1.080)

1.184
(0.974,
1.393)

Lag 03 0.221
(0.215,
0.227)

0.230
(0.226,
0.233)

0.261
(0.230,
0.293)

1.051
(1.006,
1.096)a

1.246
(1.008,
1.485)a

Lag 04 0.219
(0.213,
0.225)

0.231
(0.227,
0.234)

0.272
(0.238,
0.306)

1.066
(1.017,
1.116)a

1.331
(1.059,
1.603)a

Lag 05 0.218
(0.212,
0.224)

0.231
(0.227,
0.235)

0.281
(0.244,
0.318)

1.079
(1.026,
1.132)a

1.401
(1.095,
1.707)a

PM1-2.5

Lag 0 0.224
(0.220,
0.228)

0.229
(0.226,
0.232)

0.249
(0.228,
0.270)

1.029
(1.002,
1.055)a

1.151
(1.004,
1.298)a

Lag 01 0.225
(0.220,
0.229)

0.229
(0.225,
0.232)

0.244
(0.218,
0.270)

1.022
(0.989,
1.055)

1.114
(0.936,
1.293)

Lag 02 0.227
(0.222,
0.232)

0.227
(0.224,
0.231)

0.229
(0.200,
0.259)

1.003
(0.964,
1.041)

1.014
(0.821,
1.207)

Lag 03 0.225
(0.220,
0.231)

0.228
(0.224,
0.232)

0.239
(0.205,
0.273)

1.015
(0.971,
1.060)

1.078
(0.843,
1.312)

Table 4 (continued )

Pollutant Counterfactual risk Odd risk (OR)

P25 P75 P99 OR75/25 OR99/25

Lag 04 0.222
(0.216,
0.228)

0.230
(0.226,
0.234)

0.264
(0.224,
0.303)

1.047
(0.997,
1.097)

1.256
(0.959,
1.552)

Lag 05 0.222
(0.215,
0.228)

0.230
(0.226,
0.234)

0.264
(0.221,
0.307)

1.048
(0.994,
1.101)

1.259
(0.939,
1.579)

NO2

Lag 0 0.222
(0.220,
0.225)

0.231
(0.229,
0.233)

0.252
(0.241,
0.263)

1.050
(1.028,
1.071)a

1.177
(1.096,
1.258)a

Lag 01 0.222
(0.216,
0.228)

0.230
(0.226,
0.235)

0.252
(0.225,
0.279)

1.051
(0.996,
1.106)

1.183
(0.974,
1.391)

Lag 02 0.218
(0.215,
0.221)

0.234
(0.232,
0.237)

0.277
(0.261,
0.293)

1.099
(1.068,
1.130)a

1.376
(1.245,
1.506)a

Lag 03 0.217
(0.214,
0.220)

0.235
(0.232,
0.238)

0.281
(0.264,
0.299)

1.108
(1.073,
1.143)a

1.413
(1.264,
1.563)a

Lag 04 0.217
(0.214,
0.221)

0.235
(0.232,
0.238)

0.280
(0.261,
0.300)

1.106
(1.068,
1.144)a

1.404
(1.242,
1.566)a

Lag 05 0.218
(0.215,
0.222)

0.234
(0.231,
0.237)

0.273
(0.253,
0.293)

1.092
(1.052,
1.132)a

1.343
(1.178,
1.509)a

CO
Lag 0 0.223

(0.221,
0.224)

0.229
(0.227,
0.23)

0.262
(0.251,
0.273)

1.036
(1.025,
1.047)a

1.241
(1.160,
1.321)a

Lag 01 0.223
(0.221,
0.225)

0.229
(0.227,
0.23)

0.259
(0.247,
0.272)

1.033
(1.021,
1.046)a

1.220
(1.129,
1.311)a

Lag 02 0.222
(0.220,
0.224)

0.229
(0.227,
0.23)

0.264
(0.250,
0.278)

1.038
(1.024,
1.052)a

1.252
(1.150,
1.355)a

Lag 03 0.222
(0.220,
0.224)

0.229
(0.228,
0.23)

0.269
(0.253,
0.284)

1.043
(1.027,
1.058)a

1.289
(1.174,
1.403)a

Lag 04 0.222
(0.219,
0.224)

0.229
(0.228,
0.23)

0.270
(0.253,
0.286)

1.044
(1.027,
1.060)a

1.296
(1.171,
1.422)a

Lag 05 0.221
(0.219,
0.224)

0.229
(0.228,
0.23)

0.271
(0.253,
0.289)

1.045
(1.027,
1.063)a

1.306
(1.168,
1.443)a

O3

Lag 0 0.226
(0.222,
0.230)

0.229
(0.225,
0.232)

0.232
(0.220,
0.244)

1.014
(0.978,
1.051)

1.034
(0.946,
1.122)

Lag 01 0.226
(0.221,
0.230)

0.229
(0.225,
0.233)

0.233
(0.219,
0.248)

1.018
(0.973,
1.064)

1.044
(0.934,
1.153)

Lag 02 0.225
(0.220,
0.231)

0.229
(0.225,
0.234)

0.234
(0.218,
0.251)

1.022
(0.970,
1.075)

1.053
(0.926,
1.179)

Lag 03 0.223
(0.217,
0.229)

0.231
(0.226,
0.236)

0.242
(0.223,
0.261)

1.047
(0.988,
1.107)

1.114
(0.966,
1.263)

Lag 04 0.222
(0.216,
0.228)

0.232
(0.226,
0.237)

0.245
(0.224,
0.266)

1.056
(0.991,
1.121)

1.136
(0.972,
1.300)

Lag 05 0.221
(0.215,
0.227)

0.233
(0.227,
0.239)

0.250
(0.228,
0.273)

1.072
(1.001,
1.143)a

1.176
(0.994,
1.358)

Note: Counterfactual risk and odd risk were estimated by marginal BW model
and regression standardization.
a P < 0.05.
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adopted changes in lifestyle habits, resulting in a diminished signifi-
cance of the effects of gaseous pollutants. However, despite potentially
using more cardiovascular protective medications, the harmful impact
of PM, which is more prevalent and severe in China (Cui et al., 2022; Hu
et al., 2015; Song et al., 2021), remained evident in patients with two
comorbidities. As the lag period extended to 5 days, the cumulative ef-
fects of PM among patients with all three comorbidities also reached
statistical significance. This indicates that patients with more than two
comorbidities are also susceptible to air pollution, albeit with a longer
lag period. Another potential explanation for the less significant asso-
ciation among patients with all three comorbidities is that ambient air
pollution may have a greater impact on the progression of cardiovas-
cular diseases (CVDs) in the early stages. In a previous trajectory anal-
ysis of the UK Biobank cohort with a 12-year follow-up, Zhang et al.
(2023) observed that PM2.5 and oxynitride were associated with an
increased likelihood of transitioning from pre-hypertension to CVDs, but
the association was not statistically significant for the transition from
hypertension to CVDs (Zhang et al., 2023).

We also aimed to investigate the influence of air pollution within a
counterfactual framework. Based on the individual-level case-crossover
design (Carracedo-Martinez et al., 2010), we estimated the marginal
causal effects by employing the marginal BW model and regression
standardization (Sjölander, 2016, 2018, 2021). Recently, several studies
have emerged utilizing causal inference research designs or statistical
methods to investigate the causal relationship between air pollution and
health outcomes. However, the majority of studies have primarily
focused on mortality outcomes (Bae et al., 2020; Chen et al., 2023; Renzi
et al., 2019; Wang et al., 2016), with limited research investigating the
causal relationship between a variety of air pollutants and stroke. Chen
et al. (2023) assessed the potential causal links of PM and cerebrovas-
cular mortality by using the marginal structural Cox model. The
adjusted hazard ratio (HR) of cerebrovascular mortality were 1.041
(95% CI: 1.034 to 1.049) and 1.032 (95%CI: 1.026 to 1.038) for 1 μg/m3

increase in PM2.5, and PM10, respectively (Chen et al., 2023). Another
study conducted in New Jersey employed a variant of the
difference-in-differences approach and reported that an interquartile
IQR increase in annual PM2.5 was causally associated with a 3.0% (95%
CI: 0.2%–5.9%) increase in all-cause mortality (Wang et al., 2016). In
contrast, Bae et al. (2020) observed a significant negative causal rela-
tionship between daily O3 and mortality (Bae et al., 2020). Within a
causal framework, we observed statistically significant OR for overall
stroke associated with exposure to all seven pollutants. Among the
different particle sizes, significant lag effects were primarily found for
PM10 and PM1. We also found that only PM10, PM1, NO2, and CO had a
causal link with the risk of hospital admission for IS. These results
further indicated the significance of the prevention and control of PM1,
which has also been suggested in a previous study (Wu et al., 2022a). It
is important to note that while O3 showed relatively larger estimated
effects in our traditional regression model, its significance diminished in
our marginal BW model. This could potentially be attributed to the
neuroprotective effects of O3 (Masan et al., 2021; Resitoglu et al., 2018),
and the inverse relationship between O3 and other pollutants. From our
findings, we speculate that the heterogeneity of O3 effects observed in
previous epidemiological studies may have been induced by unobserved
confounding factors (Chen et al., 2019; Cui et al., 2022; Tian et al., 2018;
Zhao et al., 2022a).

In comparison to previous case-crossover studies that utilized
ecologic cluster data, our study collected individual-level data and
extracted personal exposure to air pollutants from the CHAP dataset,
using the patients’ residential addresses. Therefore, we anticipated that
our approach would allow for a more precise estimation of the associ-
ation. Unlike previous research, which often focused solely on whether
stroke patients had a specific comorbidity, our study conducted detailed
subgroup analyses among different comorbidity populations. We aimed
to explore whether there are differences in susceptibility to air pollut-
ants among individuals with different comorbidities and various

comorbidity accumulation patterns. Additionally, we were the first to
attempt using the marginal BW model proposed by Arvid Sjolander
within a time-stratified case-crossover design (Sjölander, 2021). This
innovative approach was used to explore potential causal relationships
between air pollutants and the risk of stroke admission. These aspects of
our study represent significant advancements in understanding the
complex interactions between air pollution and stroke, and we hope
they contribute meaningfully to the existing body of research.

We acknowledge several limitations in our study. Firstly, the esti-
mation of personal exposure relied on geographical coordinates, leading
to the exclusion of patients with unidentifiable residential addresses.
This potential selection bias could be minimized as these patients were
randomly distributed in the population and would not significantly
impact our main conclusions. The other limitation of our study is the
inability to account for the activity patterns of the participants, such as
the time spent in different locations throughout the day. While we
estimated air pollutant exposure based on the patients’ home addresses,
this approach assumes that individuals spendmost of their time at home,
which may not accurately reflect their true exposure. This limitation is
consistent with many previous studies in the field, where detailed ac-
tivity patterns were also not considered due to data availability con-
straints. Consequently, there may be some degree of exposure
misclassification, which could affect the robustness of our findings.
Future studies should aim to incorporate more detailed personal expo-
sure data, including time-activity patterns, to enhance the accuracy of
air pollution exposure assessments. Thirdly, as an observational study,
there is the possibility of unmeasured confounding factors introducing
uncertainty in the results. However, the case-crossover design used in
our study provides an advantage in controlling for confounding factors
that remain constant at the case and control days, such as life styles,
daily activities, occupational history, genetics, and so on. Thus, it can be
assumed that the reference exposure time window represents the
counterfactual exposure level the patient would have had if he or she
had not been admitted to the hospital (Carracedo-Martinez et al., 2010).

5. Conclusion

Benefiting from an expanded sample size and an extended study
duration, this case-crossover study at an individual level offers sub-
stantial substantiation concerning the link between eight air pollutants
and the susceptibility to stroke-related hospitalization. Notably, we
investigated the impact of these pollutants among patients with different
patterns of comorbidity accumulation, thereby identifying specific
vulnerable populations for each pollutant. Moreover, we established a
causal link between ambient air pollution and stroke risk within a
counterfactual framework. These results underscore the noteworthy
impact of outdoor air pollution on stroke occurrence and carry signifi-
cant implications for the management and mitigation of cerebrovascular
conditions.
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